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I: Publications 1929–1936.New York: Oxford University Press, 1986, pp. 126–
195 (also contains several related pieces). Also reprinted in S. G. Shanker,Gödel’s
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J. Mosteŕın (ed.), Madrid: Alianza Editorial,1981, pp. 45–90. Portuguese transla-
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1 Gödel’s Life and Work

Gödel’s incompleteness results are two of the most fundamental and important con-
tributuions to logic and the foundations of mathematics. Gödel showed that no axiom-
atizable formal system strong enough to capture elementary number theory can prove
every true sentence in its language. This theorem is an important limiting result regard-
ing the power of formal axiomatics, but has also been of immense importance in other
areas, e.g., the theory of computability.

Kurt Gödel was born on April 28, 1906 in Brünn, the capital of Moravia, then part
of the Austro-Hungarian Empire and now Brno, Czech Republic. His father was a
well-to-do part-owner of a textile company. Gödel attended the GermanGymnasium
in Brünn and in 1923 followed his elder brother to study at the University of Vienna.
Gödel first studied physics, but Philipp Furtwängler’s lectures on number theory so
impressed him that he switched to mathematics in 1926. His teachers quickly realized
Gödel’s talent, and upon the recommendation of Hans Hahn, who later became his
supervisor, G̈odel was invited to join the group of philosophers around Schlick known
as theVienna Circle. Gödel regularly attended until 1928, and later remained in close
contact with some members of the circle, especially Rudolf Carnap. His interest in
logic and the foundations of mathematics was sparked around that time, mainly through
Carnap’s lectures on logic, two talks which L. E. J. Brouwer gave in Vienna in 1928,
and Hilbert and Ackermann’sGrundz̈uge der Theoretischen Logik(1928).

One of the open problems posed in Hilbert and Ackermann (1928) was that of the
completeness of the axioms of theengere Funktionenkalkül, the first-order predicate
calculus. G̈odel solved this problem in his dissertation, which was submitted to the
University of Vienna in 1929 and appeared as (1930). Gödel then set to work on the
main open problem in Hilbert’s foundational program, that of finding a finitary con-
sistency proof for formalized mathematics. This led him to the discovery of his first
incompleteness theorem. In September 1930, following a report on his dissertation
work, he gave the first announcement of his new result in a discussion of the founda-
tions of mathematics at theTagung f̈ur Erkenntnislehre der exakten Wissenschaftenin
Königsberg. John von Neumann, who was in the audience, immediately recognized
the significance G̈odel’s result had for Hilbert’s program. Shortly thereafter, von Neu-
mann wrote to G̈odel with a sketch of the second incompleteness theorem about the
unprovability of the consistency of a system within that system. By that time, Gödel
had also obtained this result and published an abstract of it. The second result showed
that Hilbert’s program could not be carried out, and gave a negative solution to the sec-
ond problem in Hilbert’s famous 1900 list of mathematical questions: Gödel proved
that there can be no finitary consistency proof for arithmetic. The full paper (1931)
was submitted for publication on November 17, 1930 and appeared in January of 1931.
It was also accepted as Gödel’sHabilitationsschriftin 1932, and he was madePrivat-
dozent(unpaid lecturer) at the University of Vienna in 1933.

Throughout the 1930s, G̈odel worked on topics in logic and the foundations of
mathematics, andlectured often on his incompleteness results. In particular, he gave a
course on these results during his first visit to Princeton during the 1933/34 academic
year which exerted a significant influence on the logicians there, especially Alonzo
Church and his student Stephen C. Kleene. During the 1930s, Gödel settled a subcase
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of the decision problem for first-order logic (proving the decidability of the so-called
Gödel-Kalmar-Scḧutte class), showed that intuitionistic logic cannot be characterized
by finitely many truth values (and in the process inventing the family of Gödel logics),
gave an interpretation of classical arithmetic in intuitionistic arithmetic (thus show-
ing the consistency of the former relative to the latter), and established some proof-
theoretic speed-up results.

After the annexation of Austria by Nazi Germany in 1938, during a second visit
to Princeton, the title ofPrivatdozentwas abolished. G̈odel’s application forDozent
neuer Ordnungwas delayed, and he was deemed fit for military duty. He and his
wife Adele, whom he had married in 1938, obtained U.S. visas and emigrated in 1940.
From that date on, G̈odel held an appointment at the Institute for Advanced Study at
Princeton University. 1940 also saw the publication of his third major contribution to
mathematical logic, the proof of the consistency of the axiom of choice and of the con-
tinuum hypothesis with the other axioms of set theory. This work was also inspired by
a problem set by Hilbert: The first in his famous 1900 list of problems had asked for
a proof of Cantor’s continuum hypothesis. Gödel’s result, together with Paul Cohen’s
1963 proof of the consistency of the negation of the axiom of choice and of the contin-
uum hypothesis, gave a negative solution to Hilbert’s first problem: the axioms of set
theory do not decide the continuum hypothesis one way or the other.

From 1943 onward, G̈odel became increasingly interested in philosophy and rela-
tivity theory. In 1944, he contributed a study of Russell’s mathematical logic (see§X–
Principia) to the Russell volume in theLibrary of Living Philosophers. In the 1950s,
he published several contributions to general relativity theory around 1950. In 1958,
Gödel’s consistency proof of arithmetic by an interpretation using functionals of here-
detarily finite type, the so-calledDialectica interpretation, appeared in print. Much of
his post-1940 work, however, remained unpublished, including his modal-logical proof
of the existence of God.

In the last ten years of his life, G̈odel was in poor health, both physical and mental.
He suffered from depression and paranoia, to the point at which fear of being poisoned
kept him from eating. He died of “malnutrition and inanition” in Princeton on January
14, 1978. (For more on G̈odel’s life and work, see Feferman 1986 and Dawson 1997.)

2 Hilbert’s Program, Completeness, and Incomplete-
ness

Gödel’s groundbreaking results were obtained against the backdrop of the foundational
debate of the 1920s. In 1921, reacting in part to calls for a “revolution” in mathematics
by the intuitionist L. E. J. Brouwer and his own student Hermann Weyl, Hilbert had
proposed a program for a new foundation of mathematics. The program called for (i) a
formalization of all of mathematics in an axiomatic systems followed by (ii) a demon-
stration that this formalization is consistent, i.e., that no contradiction can be derived
from the axioms of mathematics. Partial progress had been made by Wilhelm Ack-
ermann and John von Neumann, and Hilbert in 1928 claimed that consistency proofs
had been established for first-order number theory. Gödel’s results would later show
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that this assessment was too optimistic; but he had himself set out to with the aim of
contributing to this program.

According to Wang (1987), G̈odel attempted to give a consistency proof for anal-
ysis relative to arithmetic. For this, he needed a definition of the concept of truth in
arithmetic to verify (in arithmetic itself) the truth of the axioms of analysis. But Gödel
soon realized that the concept of truth for sentences of arithmetic cannot be defined
in arithmetic. The was led to this result by considerations similar to the liar paradox,
thus anticipating later work by Tarski. Butprovabilityof a sentence from the axioms of
arithmeticis representable in arithmetic, and combining these two facts enabled Gödel
to prove that every consistent axiomatic system in which provability was representable
must contain true, but unprovable sentences. Gödel had apparently obtained this result
in the Summer of 1930. At the time, he represented symbols by numbers, and formulas
and proofs by sequences of numbers. Sequences of numbers can be straightforwardly
formalized in systems of type theory or set theory. At the occasion of the announce-
ment of his incompleteness result in the discussion at Königsberg, von Neumann asked
if it was possible to construct undecidable sentences in number theory. This suggested
a possible simplification to G̈odel, and indeed he subsequently succeeded in arithme-
tizing sequences by an ingenious use of the Chinese Remainder Theorem.

It had been assumed by Hilbert that first-order number theory is complete in the
sense that any sentence in the language of number theory would be either provable
from the axioms or refutable (i.e., its negation would be provable); indeed, he asked
for a proof of this in his lecture on problems in logic Hilbert (1929). Gödel’s first
incompleteness theorem showed that this assumption was false: it states that there
are sentences of number theory which are neither provable nor refutable. The first
theorem is general in the sense that it applies to any axiomatic theory which isω-
consistent, has an effective proof procedure, and is strong enough to represent basic
arithmetic. The system for which G̈odel proved his results is a version of the system
of Principia Mathematica. In this system, the lowest type of variables ranges over
numbers, the usual defining axioms for successor, plus comprehension are available
as axioms. However, practically all candidates for axiomatizations of mathematics,
such as first-order Peano Arithmetic, the full system ofPrincipia mathematica, and
Zermelo-Fraenkel set theory satisfy these conditions, and hence are incomplete.

3 An Outline of Gödel’s Results

Gödel’s (1931) paper is organized in four sections. Section 1 contains an introduction
and an overview of the results to be proved. Section 2 contains all the important defi-
nitions and the statement and proof of the first incompleteness theorem. In Section 3,
Gödel discusses strengthenings of this result. Section 4 is devoted to a discussion of
the second incompleteness theorem.

In Section 2, G̈odel first sets up some necessary definitions, gives the axioms of
the variantP of the system ofPrincipia Mathematiawhich he uses, introduces the
machinery necessary for the arithmetization of metamathematics (Gödel numbering),
and proves four theorems (I–IV) about recursive function and relations. The language
of the systemP consists of the usual logical symbols, 0 and the successor functionf , as
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well as a repository of simply typed variables. Variables of the lowest type range over
natural numbers, variables of the next type range over classes of numbers, variables
of the third type range over classes of classes of numbers, and so on. The axioms of
the system are the usual logical axioms, the comprehension axiom(∃u)(∀v)(u(v) ≡
A(v)) (whereu is a variable of typen+1, v a variable of typen, andA a formula not
containingu free), and the extensionality schema(∀v)(x(v)≡ y(v))→ x = y).

One of the novel methods G̈odel uses is the arithmetization of syntax, now called
‘Gödel numbering’. In order to be able to formalize reasoning about formulas and
proofs in systemP—which is, after all, a system for number theory—Gödel defines a
mapping of the symbols in the language ofP to numbers. In G̈odel’s original paper,
the mapping is given by 07→ 1, f 7→ 3,∼ 7→ 5,∨ 7→ 7, ∀ 7→ 9, (7→ 11, ) 7→ 13 and the
k-th variable of typen is mapped topn, wherep is thek-th prime> 13 (e.g., the first
variable of lowest type is coded by 17). A sequence of symbols (e.g., a formula) with
codesn1, . . . ,nk is then mapped to the number 2n1 ·3n2 · . . . · pnk

k .
What G̈odel calls recursive functions and relations would now be calledprimitive

recursive functions (and relations); Gödel used the terminology in use at the time. A
function φ is primitive recursive if there is a sequence of functions each of which is
either the successor functionx+ 1, a constant function, or results from two functions
ψ, µ occurring previously in the sequence by the schema of primitive recursion,

φ(0,x2, . . . ,xn) = ψ(x2, . . . ,xn)
φ(k+1,x2, . . . ,xn) = µ(k,φ(k,x2, . . . ,xn),x2, . . . ,xn).

A relation between natural numbers is primitive recursive if it can be defined byφ(x1, . . . ,xn)=
0, whereφ is a primitive recursive function.

Gödel’s Theorem I states that primitive recursive functions are closed under sub-
stitution and primitive recursion. Theorem II states that recursive relations are closed
under complement and union. Theorem III states that if two functionsφ, ψ are prim-
itive recursive, then so is the relation defined byφ(x̄) = ψ(x̄). Theorem IV, finally,
establishes that primitive recursive relations are closed under bounded existential gen-
eralization, i.e., ifφ(x) andR(x, ȳ) are primitive recursive, then so is the relation defined
by (∃z)(z≤ φ(x)& R(z, ȳ)).

Gödel next defines 46 functions and relations needed for the arithmetization of
syntax and provability, of which the first 45 are primitive recursive. These definitions
culminate in the definition of (45)xBy (‘x is a proof ofy’) and (46) Bew(x) (‘x is
a provable formula’). Bew(x) is not primitive recursive, since it is obtained fromB
by unbounded existential generalization (i.e., as(∃y)yBx). These definitions use the
arithmetization of syntax introduced earlier in the sense that, e.g., the relation Bew(x)
holds of anumber xif it is the code of a provable formula.

Gödel then sketches the proof of Theorem V, which states that wheneverR is a
primitive recursiven-ary relation, then there is a formulaA with n free variables, so
that if R(k1, . . . ,kn), thenA(k̄1, . . . , k̄n) is provable, and when notR(k1, . . . ,kn), then
∼A(k̄1, . . . , k̄n) is provable. (Here,̄k is 0 preceded byk f ’s). A formula A which is
obtained from the primitive recursive definition ofR in the way outlined in the proof
is called a primitive recursive formula. Since the proof is only sketched, this is not
an explicit definition of what a primitive recursive formula is. In particular, in the
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systemP, the most natural way to formalize primitive recursion is by higher-order
quantification over sequences of numbers. Gödel explicitly uses such a second-order
quantifier in the proof of Theorem VII discussed below. The method of constructing a
formula ofPwhich satisfies the conditions of Theorem V for a given primitive recursive
relationR—a formula which ‘numeralwise represents’R—yields such a formula for
each of the 46 functions and relations defined earlier.

Following the proof of Theorem V, G̈odel introduces the notion ofω-consistency.
Roughly, an axiomatic system isω-consistent if it does not both proveA(n̄) for all
n and∼(∀x)A(x). Theorem VI then is the first-incompleteness theorem. Supposeκ
is a primitive recursive predicate that defines a set of (codes of) formulas, which we
might add as axioms to systemP. Then we can, in a similar way as before, define the
relationxBwκy (x is a proof ofy in Pκ) and the predicate Bewκx (x is provable inPκ).
Theorem VI states that ifPκ is ω-consistent, then there is a primitive recursive formulas
A(x) so that neither(∀x)A(x) nor∼(∀x)A(x) are provable inPκ. By an ingenious trick
combining diagonalization and the arithmetization of syntax (especially, Theorem V),
Gödel proves that there is a formulaA(x) so that(∀x)A(x) is provably equivalent inPκ
to ∼Bewκ(p̄), wherep is the G̈odel number of(∀x)A(x) itself. Hence,(∀x)A(x) in a
sense says of itself that it is unprovable.

The paper continues in Section 3 with a number of strengthenings of Theorem VI.
The formulaA whose existence was proved in Theorem VI may contain quantifiers
over higher-type variables. A relation which can be defined using only quantification
over individual variables, and also+ and· as additional functions (addition and mul-
tiplication) is calledarithmetical. Theorem VII states that every primitive recursive
relation is arithmetical. Furthermore, the equivalence of recursive relation with arith-
metical relations is formalizable in the system, i.e., ifA is a primitive recursive formula,
then systemP proves thatA is equivalent to an arithmetical formula (one containing+,
·, but no quantification over variables of higher type). It then follows from Theorem VI
that everyω-consistent axiomatizable extension ofP contains undecidable arithmetical
sentences (Theorem X).

The final section is devoted to the second incompleteness theorem (Theorem XI),
which says that the formalization of consistency of of an extensionPκ of P is not
provable inPκ. In this context, the formula formalizing consistency ofPκ is taken
to be Widκ ≡ (∃x)(Form(x) & ∼Bewκ(x)) (‘there is an unprovable formula’). The
proof of Theorem XI is only sketched. The argument for the first half of Theorem VI,
namely, that(∀x)A(x) is unprovable inPκ, uses only the consistency ofPκ, but not itsω-
consistency. By formalizing this proof inPκ itself, we see thatPκ proves the implication
Widκ →∼Bewκ(p̄), wherep is the G̈odel number of the unprovable(∀x)A(x). But, as
noted above,∼Bewκ(p) is equivalent, inPκ, to (∀x)A(x). So if Widκ were provable,
then (∀x)A(x) would be provable as well. (For in-depth treatments of the technical
results, see Smoryński 1977 or H́ajek and Pudĺak 1993).
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4 Importance and Impact of the Incompleteness Theo-
rems

The main results of G̈odel’s paper, the first (Theorem VI) and second (Theorem XI)
incompleteness theorems stand as two of the most important in the history of mathe-
matical logic. Their importance lies in their generality: Although proved specifically
for extensions of systemP, the method G̈odel used is applicable in a wide variety of
circumstances. Anyω-consistent system for which Theorem V holds will also be in-
complete in the sense of Theorem VI. Theorem XI applies not as generally, and Gödel
only announced a second paper in which this was going to be carried out for systems
which are not extensions ofP. However, the validity of the result for other systems
was soon widely recognized, and the announced paper was never written. Hilbert and
Bernays (1939) provided the first detailed proof of the second incompleteness theorem,
and gave some sufficient conditions on the provability predicate Bew in order for the
theorem to hold (see§X–Grundlagen der Mathematik).

One important aspect of the undecidable sentence(∀x)A(x) is that, although it is
neither provable nor refutablein P, it is nevertheless readily seen to betrue. For what it
states is that it itself is not provable inP, and by the first incompleteness theorem, this is
precisely the case. Since it is also not refutable, i.e., its negation is also unprovable inP,
the existence of undecidable sentences like(∀x)A(x) shows the possibility of axiomatic
systems which areω-inconsistent. The system resulting fromP by adding(∀x)A(x) as
an additional axiom is one example. It provesA(n̄) for all n, and also(∃x)∼A(x).
Although by Theorem VI, there will also be true, but unprovable statements inthis
system, the existence of undecidable sentences is left open. Rosser (1936) weakened
the assumptions of Theorem VI and showed that alsoω-inconsistent, but consistent
systems of the type discussed by Gödel will contain independent sentences.

The immediate effect of G̈odel’s theorem, and in particular, of Gödel’s second the-
orem, was that the assumptions of Hilbert’s program were challenged. Hilbert assumed
quite explicitly that arithmetic was complete in the sense that it would settle all ques-
tions that could be formulated in its language—it was an open problem he was con-
fident could be given a positive solution. The second theorem, however, was more
acutely problematic for Hilbert’s program. As early as January 1931, in correspon-
dence between G̈odel, Bernays, and von Neumann, it became clear that the consistency
proof developed by Ackermann must contain errors (see Zach 2003). Both Bernays and
von Neumann accepted that the reasoning in Gödel’s proof can be readily formalized
in systems such asP; on the other hand, a consistency proof should, by Gödel’s own
methods, also be formalizable and yield a proof inP of the sentence expressingP’s
consistency. The errors in the consistency proof were soon found. It fell to Gentzen
(1936) to give a correct proof of consistency using methods that, of necessity, could
not be formulated in the system proved consistent. Although Gödel’s results dealt a de-
cisive blow to Hilbert’s program as originally conceived, they led to Gentzen’s work,
which opened up a wide range of possible investigations in proof theory. (For more on
the reception of G̈odel’s theorems, see Dawson 1989 and Mancosu 1999).

As mentioned above, up to 1930 it was widely assumed that arithmetic, analysis,
and indeed set theory could be completely axiomatized, and that once the right axiom-
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atizations were found, every theorem of the theory under consideration could be either
proved or disproved in the object-language theory itself. Gödel’s theorem showed that
this was not so, and that once a sharp distinction between the object- and metathe-
ory was drawn, one could always formulate statements which could be decided in the
metatheory, but not in the object theory itself. The first incompleteness theorem shows
that object-level provability is always outstripped by meta-level truth. Gödel’s proof,
by example as it were, also showed how carefully object- and meta-language have to
be distinguished in metamathematical considerations. A few years later, Tarski’s work
on truth and semantic paradoxes pointed to the same issue, showing that truth cannot
be defined in the object-level theory (provided the theory is strong enough).

Gödel’s results had a profound influence on the further development of the foun-
dations of mathematics. One was that it pointed the way to a reconceptualization of
the view of axiomatic foundations. Whereas prevalent assumption prior to Gödel—
and not only in the Hilbert school—was that incompleteness was at best an aberrant
phenomenon, the incompleteness theorem showed that it was, in fact, the norm. It
now seemed that many of the open questions of foundations, such as the continuum
problem, might be further examples of incompleteness. Indeed, Gödel (1940) himself
succeeded not long after in showing that the axiom of choice and the continuum hy-
pothesis are not refutable in Zermelo-Fraenkel set theory; Cohen (1966) later showed
that they were also not provable. The incompleteness theorem also played an impor-
tant role in the negative solution to the decision problem for first-order logic by Church
(1936). The incompleteness phenomenon not only applies to provability, but, via the
representability of recursive functions in formal systems such asP, also to the notion
of computability and its limits.

Perhaps more than any other recent result of mathematics, Gödel’s theorems have
ignited the imagination of non-mathematicians. They inspired Douglas Hofstadter’s
bestsellerGödel, Escher, Bach, which compares phenomena of self-reference in math-
ematics, visual art, and music. They also figure prominently in the work of popular
writers such as Rudy Rucker. Although they have sometimes been misused, as when,
self-described Postmodern writers claim that the incompleteness theorems show that
there are truths that can never be known, the theorems have also had an important
influence on serious philosophy. Lucas, in his paper “Minds, machines, and Gödel”
(1961) and more recently Penrose inShadows of the Mind(1994) have given argu-
ments against mechanism (the view that the mind is, or can be faithfully modeled by a
digital computer) based on G̈odel’s results. It has also been of great importance in the
philosophy of mathematics. G̈odel himself, for instance, saw them as an argument for
Platonism (see, e.g., Feferman 1984).
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Symbolic Logic, 1, 87–91.

9
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