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An interpretation of quantum mechanics in terms of classical concepts, “beables,” due to de Broglie,
Bohm, and Bell (BBB) is generalized and further developed. By assuming that all physical quantities
take discrete values on sufficiently small scales, we can use this interpretation to give trajectories for all
possible quantities, including the position of a particle, its spin, etc. When applied to position, it is
shown that, in the continuum limit, this interpretation reduces to the causal one of Bohm. As an illus-
tration, the BBB trajectories are computed explicitly in two simple models.

PACS number(s): 03.65.Bz

I. INTRODUCTION

In the usual interpretation of quantum mechanics, a
description of the subatomic world in terms of classical
concepts is rejected. Instead of attributing specific prop-
erties to microscopic systems, only the possibility to ob-
serve these properties is considered. To be specific, we
may consider a particle in one dimension. Classically,
this particle has a position x(z) and a momentum p (¢) for
all times 7. In a quantum-mechanical description one can
still observe that the particle has a position x (z;) by do-
ing a suitable experiment or one can observe a momen-
tum p(z,) by doing a different experiment. However,
these two experiments are noncompatible (hence, #,7¢,)
and the classical picture that the particle at the same time
has a sharp position and a sharp momentum cannot be
verified. In the Copenhagen interpretation of quantum
mechanics, this noncommensurability of noncommuting
observables is taken one step further by stating that the
quantum particle only potentially has a position and
momentum; these properties do not actually exist, unless
a specific measurement is performed. The belief that it is
impossible to assign precise values (“hidden variables”) to
observables has resulted in proposals for no-go theorems
against such hidden-variable interpretations of quantum
mechanics [1-4].

It is not clear, however, that the denial of position and
momentum on a microscopic level is really unavoidable.
In fact, there are attempts to reconcile quantum mechan-
ics with a description in terms of classical concepts such
as position and momentum, and Bell has discussed the
loopholes in the various no-go theorems in Refs. [2,5]. A
realistic interpretation in terms of ‘“be-ables” [6] rather
than “observables” is appealing because it avoids the no-
tion of a conscious observer and avoids a ‘“‘cut” between
the microscopic, quantum world and our macroscopic
world of classical phenomena. Also, it allows one to
make sense out of a wave function of the Universe [7,8],
which might be relevant for a better understanding of
quantum cosmology.

Two of the better known beable interpretations of
quantum mechanics are the “causal interpretation” due
mainly to Bohm [9,10] (see Ref. [11] for a review) and the
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‘“stochastic interpretation” associated with Nelson
[12-14] (see Ref. [15] for a review). Both approaches
provide trajectories x (¢) for the particle position which
correspond to a given wave function ¥(x,t). This wave
function is a solution of the Schrodinger equation

i#0,(x,t)= —#1Y(x,t) /2M + V(x)(x,1) , (1)

where M is the particle mass and V(x) the potential.
In the causal approach, the trajectories x (¢) are found
from v by solving

x=0,S(x,t)/M , (2)
with S(x,?)/# the (real) phase of the wave function,
P(x,t)=R(x,t)exp[iS (x,t)/#] .

In the stochastic approach one has to solve the Langevin
equation

dx(t)=[vd,R(x,t)/R (x,t)
+9,8(x,t)/Mdt +v'2dn(1) . (3)

Here, 7(t) is white noise with (dn(z))=0 and
(dn(t)?)=dt and v is an arbitrary, but sufficiently small,
diffusion constant «<#. Note that for v=0, this equation
reduces to the causal one of Eq. (2).

The probability density of an ensemble of particles
which move according to Eq. (2) or Eq. (3) obeys the con-
tinuity equation

9,R*=0,(R?,S), )

which follows from (the imaginary part of) the
Schrodinger equation. Assuming that the probability dis-
tribution of the particle positions equals |1|? at some ini-
tial time ¢4, it will be equal to |¢|? for all later times as
well. This assumption on the initial particle distribution
was modified by Bohm [16] which may lead to observable
deviations from standard quantum mechanics. In this
paper we shall not follow this modification but assume
that the initial positions are also distributed according to
|1/J|2. Then all predictions of quantum mechanics involv-
ing only position are reproduced in terms of particles
moving according to Eq. (2) or Eq. (3).
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Moreover, one can make contact with the classical
equation of motion for the particle as follows: In the sto-
chastic approach one first introduces suitable forward
and backward time derivatives D," and D, (see [14,15]
for the definitions). Then one can show that [17]

MDD~ +D; D )x

2
x

2MR

=—-3, |V— (H—aM>Y) | . (5)

Nelson chooses v=7/2M [14] and then this equation
resembles Newton’s equation, up to the quantum
modification ¥ —1(D,;"D,” + D, D," )x. For v=0, which
is the causal case, D," =D, =3,, and one recovers
Newton’s equation up to a modification of the potential
V—V+Q, where the additional piece is the “quantum
potential”

Q=—#932R/2MR . (6)

These approaches show that it is possible to give an in-
terpretation of quantum mechanics where the particles
actually have a definite position whether they are ob-
served or not. They give a counterexample to the asser-
tion of the usual Copenhagen interpretation that well-
defined and sharp particle trajectories are not allowed by
quantum mechanics. It has been objected, however, that
these interpretations are too limited: It is not obvious
how to extend them to observables that cannot follow
continuous trajectories, like spin or fermion number. A
related criticism is that position space is singled out and
it is not clear why this should prevail over, e.g., momen-
tum space [18,19]. Also, the possibility to generalize
these interpretations to relativistic quantum mechanics or
field theory has been questioned. These criticisms have
already been put forward a long time ago [20-22] and
have been answered already to some extent by Bohm [23].

In this paper we focus on yet another beable interpreta-
tion, which is less known and less developed than the
causal and stochastic interpretations but which appears
to obviate the criticisms just mentioned. It will be seen to
include the causal interpretation as a special case but it
can also be applied to discrete variables like spin and to
other nonposition variables like (angular) momentum.
Also, an extension to relativistic field theory is, in princi-
ple, straightforward.

In Ref. [24] Bell has sketched this beable interpretation
which provides stochastic trajectories for discrete quanti-
ties (he considers fermion number). Below we shall ex-
tend and further develop this approach and we shall illus-
trate it with explicit examples. We argue that this ‘“de
Broglie—Bohm-Bell” (BBB) approach can be applied to
any observable, position, momentum, spin, etc., by mak-
ing the assumption that, on a sufficiently small scale, all
quantities take discrete values. It is shown that the posi-
tion trajectories x(t¢), computed in the BBB fashion,
reduce in the continuum limit (where the discretization
can be ignored) to those of the causal approach, or—
choosing a different version of BBB—to the stochastic
approach.

We shall also argue that this beable interpretation can

be taken to an extreme (but in our opinion natural) form
where all conceivable observables simultaneously have a
sharp value, as is the case in a classical description.
From a given wave function, one can compute trajec-
tories for any observable O, i.e., definite values v(O%)
evolving in time. Of course, these trajectories in general
lack the classical correlations, i.e.,

v(f(0,0))F*f(v(0") ,v(0?),

where f denotes some arbitrary functional relation. This
is obvious for noncommuting operators, but in order to
circumvent the Kochen-Specker (KS)-type no-go
theorems [3], it must also be the case if the operators
commute. Only when 1 is an eigenstate of the commut-
ing operators do the classical correlations hold for these
observables on the microscopic level of the trajectories;
otherwise, the correlations are only restored in the classi-
cal regime.

In the following we shall first explain and generalize
the BBB interpretation of quantum mechanics in Sec. II
and discuss the relevance of the KS theorem for our ap-
proach. In Sec. III we show the connection with the
causal and stochastic approaches. A technical part of the
argument is deferred to an Appendix. In Sec. IV we illus-
trate the BBB approach by computing the trajectories for
a particle moving on a one-dimensional lattice and for a
spinning particle in a magnetic field. Section V contains
a discussion of possible objections.

II. DE BROGLIE-BOHM -BELL INTERPRETATION
OF QUANTUM MECHANICS

It is sometimes argued [19,24] that in the end all mea-
surements amount to observing (pointer) positions and
that it is sufficient to give a beable interpretation for loca-
tion. Arguing this way, Bell focused on the spatial distri-
bution of fermion number and Bohm exclusively works in
the position representation. However, specifying that
only a single quantity is a beable with all others being
merely observable seems arbitrary, even if this quantity is
as fundamental as position. Therefore, we propose to
give all observables a beable status and we shall explore
this point of view below. First, it is shown how Bell’s in-
terpretation can be applied to an arbitrary observable.
After that, we discuss how the KS theorem, which ap-
pears to forbid a realistic interpretation for all observ-
ables simultaneously, is circumvented.

A. Trajectories for any observable

In order then to apply Bell’s beable interpretation [24]
to an arbitrary observable, we shall make the assumption
that all physical quantities are discrete and bounded. For
those quantities that we observe to be continuous, such
as, e.g., the position of a particle, we assume that the
minimal separation between two consecutive values is
very small, e.g., of the order of the Planck scale. The size
of the system is also taken to be finite, such that momenta
are also discrete. We shall assume that the dynamics of
this finite (but huge) number of degrees of freedom fol-
lows from a quantum-mechanical wave function which is



1810 JEROEN C. VINK 48

a solution of the (continuous-time) Schrodinger equation.
Consider a solution |¢(¢)) of the Schrodinger equation
for a subsystem of this discrete and finite world,

i#d,|Y()) =H|y(t)) , 7

where H is the Hamiltonian for this subsystem. Suppose
we want to find the trajectories for an arbitrary but maxi-
mal set of commuting observables O’ (i =1, . ..,I) which
have eigenstates 10,}1,032, . ,0:1>, with n'=1,...,N’
labeling the finite and discrete eigenvalues of O'. For
ease of notation we suppress the index i/ such that the
completeness relation simply reads 1=3,lo,?{o,l.
However, it should be kept in mind that each o,
represents a maximal set of quantum numbers.

The continuity equation in the O representation, which
follows from the Schrodinger equation (7), is

#3,P, = ST, . ®)

The probability density P, and source matrix J,, are
defined by

n=|{o, |¥())|?*,
Jum (8)=2Im{{¢(¢)]0, )0,|Hlo,, Yo, |¢())} .

In passing we note that we have deviated slightly from
Bell’s approach, because we assume that the states {|o, )}
form a basis in Hilbert space. In Bell’s paper [24] the
probability density P and source J for a specific observ-
able O' are considered, while summing over the remain-
ing quantum numbers. In his approach the probability
density for observable O' is then defined by

=3,1¢o:,ql¥)|? with ¢ denoting the o/ j, j7i, and a
similar modification in his definition of J},, .

We want to interpret this system in terms of beables:
At each time the observable actually has a value o,.
Since a trajectory for a discrete quantity cannot be con-
tinuous (unless it is time independent), we cannot use a
differential equation of motion and it is natural to expect
stochastic dynamics. In such a description, the jumps of
the beable are governed by a transition probability T, ,dt
which gives the probability to go from state o, to o,, in
the time interval dz. The transition matrix T gives rise to
a time-dependent probability distribution of o, values,
P, (t), which has to satisfy the master equation

o,P,= (T, P

mm= m

~T,.P,) . (10)

m

In order to use this stochastic description for the
quantum-mechanical system, we have to reconcile (8)
with (10). For that, it is sufficient to solve T, for given P
and J, from

Jp /H5=T, P, —T, P

n

n o (11)

with T,,=0. Since J,,=—J,,, this gives only
N (N —1)/2 equations for the N2 elements of T and there
is a lot of freedom to find solutions. Bell chooses a par-

ticular solution where for n#m,

>
r - Jom /AP, Jpm =0 12)
0, J,,=<0.
For a given T and an arbitrary, but sufficiently small,
time discretization step df, one can compute trajectories
from the transition probabilities T,,,dt. The probability
"« dt to stay in the same state is not fixed by Eq. (11) or
Eq. (12) but follows from the normalization

>T,,dt=1. (13)

However, one can add to the T,,, defined in (12) any
solution T° of the homogeneous equation,
TO

hm m

—71°,P,=0. (14)

Again, there is lots of freedom, but perhaps a natural
solution is to take a Gaussian ansatz, T,
< exp(—F2, /40), where the antisymmetric part of F

is chosen to be m —n. The symmetric part of F is then

fixed by (14), leading to
/ 40

For o —0, this extension of T,, is «J§,, and has no
effect on the trajectories, for finite o, it adds to the proba-
bility for jumps over larger values of |n —m]|.

For the sake of illustration, we write down a third solu-
tion,

TS, =1,

20 In(P, /P,

TO «exp n—m——— (15)

T2,=P,/P,, n>m (16)

and T?, following again from (13).

The choice Bell made looks simpler than extensions
with nonzero T°, but a priori any solution of (11) leads to
the same time dependence of expectation values involving
the observables O’ and is compatible with quantum
mechanics. In order to put a constraint on the choices
for T,,, we need to judge the resulting trajectories. In
particular, we have to verify that the trajectories become
solutions of the classical equations of motion in the classi-
cal region where S >>#. To investigate this, it is ap-
propriate to use “position” as observable, for which we
then must recover Newton’s equations of motion.

We shall not carry out this investigation for general
solutions of (11) but in Sec. III we shall show that Bell’s
choice (12) leads to the de Broglie—Bohm “causal” inter-
pretation in the continuous positions limit, and the
Gaussian extension (15) leads to Nelson’s ‘“‘stochastic” in-
terpretation, provided we choose the width of the Gauss-
ian sufficiently small. The third solution (16) leads to
discontinuous trajectories and must be rejected.

B. Trajectories for all observables

In the above it is shown that a trajectory can be as-
signed to an arbitrary observable. Given this possibility,
one has two options for a realistic interpretation of quan-
tum mechanics: Either one selects a preferred set of ob-
servables for which definite values are assumed to exist,
or one attempts to assign definite values to all observables
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simultaneously. The first option is taken, for example, in
the causal and stochastic interpretations. The second op-
tion, which we want to advocate in this paper, at first
sight seems to be forbidden by the KS theorem.

The KS theorem, in the simplified form discussed in
Ref. [4], starts from the assumption that a functional re-
lation among mutually commuting operators should also
hold for the values one would assign to them. Denoting
the value of an operator O by v(0O’), the assumption is
that for commuting operators O', i=1,...,n,

v(f(O,...,0")=fWwO"),...,v(0"), (17)

where the system may be described by an arbitrary wave
function and where f denotes any functional relation.
The KS theorem follows from the observation that for
certain sets of operators one can write down a number of
relations among subsets of mutually commuting opera-
‘tors, which can be shown to violate assumption (17).
Since commuting observables can be measured simultane-
ously, condition (17) is considered to be necessary to
avoid conflicts with the predictions of quantum mechan-
ics, and it is concluded that it is not possible to ascribe
values to all observables simultaneously.

However, as was recognized already by Bell in Refs.
[2,5], there is a hole in the net. Part of the assumption is
that the system may be described by an arbitrary wave
function, but in fact the constraint (17) must only hold
for a wave function during a measurement. If a measure-
ment on the quantum system is performed, one has to
consider the combined wave function, with arguments in
the much larger space of degrees of freedom of the origi-
nal system plus measuring device. For a successful mea-
surement, this combined wave function develops sharp
peaks with negligible overlap and interference, around
configurations which correlate an eigenstate of the quan-
tum system with a state of the measuring device showing
the result of the measurement (see, e.g., Ref. [25]). The
BBB trajectory of the system follows one particular peak
of the wave function. Since there is negligible overlap
and interference from the other peaks, these can be
neglected for the evolution of the BBB trajectory, just as
if the microscopic state has evolved into a mixture of
eigenstates. See also Refs. [28,26] for a discussion of the
measurement process in the causal interpretation.

If one accepts the constraint that condition (17) must
only hold for wave functions during measurement and for
observables that commute with the observable being mea-
sured, the KS theorem loses its sting and one can use the
BBB approach to assign definite values to all observables
simultaneously. Toward that end, one simply applies the
prescription given above to any chosen set of observables,
some of which may mutually commute. In general, the
constraint (17) will fail to hold, even if the operators in-
volved commute. However, it was discussed above that
during a measurement the wave function of the quantum
system effectively evolves into an eigenstate of the observ-
able being measured, and then the constraint (17) holds
among any set of operators that commute with the one
being measured.

III. CONNECTION WITH THE CAUSAL
AND STOCHASTIC INTERPRETATIONS

To simplify the discussion, we consider a particle in
one dimension. Following our assumption that all de-
grees of freedom must be discrete and finite, we restrict
the positions to the sites of a one-dimension lattice,
x =an, with n=1, ..., N and a the lattice distance. The
Schrodinger equation for wave functions ¥(x) is a discre-
tized version of Eq. (1):

i#0,Y(x,t)=Hy(x,t)
ﬁZ

=— S Ma? [¥(x +a,t)+P(x —a,t)
a

—2¢(x, 1) ]+ V(x)P(x,1) . (18)

Here we have chosen a simple discretization for the La-
placian,

a)zcs(x _y)_)[sn,m+l+8n,m—l—.28n,m]/a2 > (19)

with n=x/a, m=y/a, and §,, , the Kronecker 6. No-
tice that this discrete Laplacian is Hermitian, which is
necessary for a unitary time evolution, i.e., to obtain the
continuity equation (8) from the Schrodinger equation.
The boundary condition on ¥(x,¢) will not be important
but, to be specific, we shall impose periodicity.

Following the same steps as above, we define the prob-
ability density P, and the matrix J,,, as

P,=[y¢(an)]*y(an) ,
Jn =2Im{[¢Ylam)]*H,, P(an)} .

Here we label P,J and the Hamiltonian H with the in-
teger lattice sites and suppress the argument . More ex-
plicitly, we find, for J,,,,,,

(20)

2

Tn == Afaz Im{[¢(an +a)]*Yan)s,,, -,

+[Ylan —a)]*Plan)s, , 41} - 21

For small discretization step a, and wave functions that
are smooth on this lattice scale, we can write, for the
shifted wave functions,

Y(x +a)=y(x)+a{[R(x)]exp[iti 'S(x)]
+R(x)in[S(x)]
Xexpli#i~1S(x)]+0(a)} , (22)

where we use the polar decomposition =R exp(i#~'S)
and derivatives defined by

[F(x))=[F(x +a)—F(x)]/a .
To leading order in a, it follows that

J =

mn %{[S(an)]'P,,Sn,m—1_[S(an)]'Pn5n,m+1} :

(23)
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At this point we have to choose a prescription to find
the transition matrix T from J. First, we consider Bell’s
choice which is specified in Eq. (12). Then we find

S {[S(an)]'/Ma}s, , _;, [S(an)]'Z0 24)
m | —{[S(an)]' /Ma}s, ,, 1> [S(an)] <0.

This shows that the nearest-neighbor interactions in the
Hamiltonian lead to transitions only between neighboring
sites. For positive [S(an)]’ the particle can jump from
site n to n + 1 with probability |[S (an)]'|dt /Ma, and for
negative [S(an)]’, it can jump from n to n —1 also with
probability |[S(an)]’|dt /Ma. Since each jump is over a
distance a, the average displacement in a time interval dt
is dx=S(x)dt/M, and since S’'—3,S for a—0, this
suggests that in the continuum limit, the particles have
an average velocity X =9,.5 /M, as is the case for the tra-
jectories in the causal prescription given in Eq. (2).

To show that the trajectories for a —0 become smooth
and therefore identical to those of the causal approach,
we also have to verify that the dispersion vanishes in the

|

[S(an)]

T,,dt~= Ma
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limit that a —0. This is carried out in the Appendix,
where it is shown that the dispersion in the position van-
ishes «<a!/? for a—0. On scales which are large com-
pared to the discretization step a, the causal differential
equation (2) provides a good description of the particle
trajectories. However, on scales comparable to the lattice
distance a, this description breaks down and the dynam-
ics is seen to be discontinuous and stochastic.

As discussed above, we can modify the transition ma-
trix by adding an extra term T° of the form (15) to T.
This extra term introduces transitions between more dis-
tant sites and it may lead to deviations from a smooth
causal shape of the trajectories in the continuum limit.
Let us assume that the width of the Gaussian is
sufficiently small, such that jumps are only likely for
which we can approximate

(InP,—1nP,)/(an —am)

by 2[R(an)]'/R(an). This also requires R to be
sufficiently smooth on the lattice scale, as before. Then
the transition probability to go from »n to m is given by

8 n+1taexp(—{am—an—oca®(R(an)]'/2R (an)}*/20a?) |dt . (25)

Here we added aT? to the T of Eq. (24) with a free parameter « and assumed that S’ > O for definiteness.
From this expression we find the expected value for the jump,

(m —n)=dt{[S(an)]'/Ma+aca[R (an)]' /2R (an)} .

(26)

Also taking into account the dispersion due to the finite width of the Gaussian distribution provided by 7°, we arrive at
a Langevin equation for the time dependence of the particle position x =an,

x(t +dt)=x(t1)+{am —an)+1{(am —an—{am —an ))*)2dn+0(a?)

~x(1)+{[S(x)]/M+(aca®)[R (x)]'/2R (x)}dt + Laca?)?dn+O0(a?) . 27

Here, dmn gives the (rescaled) Gaussian fluctuations,
(d7m*)=2dt. This coincides with the stochastic equation
(3), with aca?/4=v equal to the diffusion constant. If
aca? vanishes when a —0, then the causal trajectories
are recovered; the value aoa?=2#/M, which is finite for
a —0 but of the order of #, reproduces Nelson’s stochas-
tic dynamics, whereas still larger values for the dispersion
lead to stochastic behavior on a macroscopic scale and
are forbidden. This applies in particular to the extreme
choice (16) for T°, where the particle can jump from a
given position to any position with an appreciable value
of R(x), even in the continuum limit.

Even though a large class of extensions with nonzero
T9 is possible, it is not clear to us what a natural choice
would be other than the most simple option 7°=0. In
the remainder of this paper we shall always use this
minimal prescription in our illustrations.

IV. SOME SIMPLE EXAMPLES

To illustrate how the BBB interpretation works in
practice, we shall apply it to two simple quantum toy

models. First, we consider a free particle moving on a
circle and, second we look at the angular momentum of a
heavy particle spinning in a magnetic field.

A. Free particle on a circle

For simplicity we consider a particle moving in one di-
mension. As discussed above, we discretize this system
by restricting the positions to lattice sites. For conveni-
ence, we shall impose periodic boundary conditions on
the wave functions, which implies that the particle moves
on a circle. The main objective of this example is to show
explicitly how the stochastic BBB trajectories turn into
the causal Bohm trajectories in the limit of vanishing
discretization a—0, N— o« for fixed volume L = Na.
Therefore, we have chosen to consider a free particle with
V(x)=0, for which solutions of the Schrodinger equation
in the continuum limit and the associated causal trajec-
tories in the Bohm approach can be found easily. From
now on, we shall use units in which #=1.

In the continuum limit we can find solutions of the
Schrodinger equation (1) with =0 which are of Gauss-
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ian form:
0

PM(x,0)=C(t) 3 exp[—LA(t)x +kL —vt)?

k=—oo
+iMv (x +kL)] . (28)

Here, A(t)=(w?+it/M)”!, and we have enforced
periodicity by the summation over k. This solution
represents a wave packet which moves with velocity v
and has an initial width w (v and w are free parameters).
The factor C(¢) is a normalization constant which is ir-
relevant for the computation of the causal Bohm trajec-
tories.

To find these trajectories, one has to compute the
phase of the wave function ¢*™, compute its gradient, and
solve the differential equation (2) for a set of initial posi-
tions xg, which are chosen with probability
o [1*"(x,0)|2. These steps can be carried out easily with
the aid of a computer, and a set of trajectories is shown in
Fig. 1 (dotted lines). One recognizes the average velocity

S BT
0 0.05

| I BT R

0.1 0.15 0.2
t/L —=

FIG. 1. Trajectories for a free particle. The dotted lines are
causal trajectories, computed in the continuum limit; the solid,
jumpy lines are discrete BBB trajectories. (a)—(c) have different
lattice distance a =L /N, with N =20, 100, and 500, respective-
ly.
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v of the particles, as well as their dispersion due to the
spreading of the wave packet.

To find the trajectories in the BBB picture, we follow
the steps outlined in Sec. Il A. Now the lattice distance
is finite and we have to solve the discretized Schrodinger
equation (18). To do so, we make a Fourier transforma-
tion to momentum space:

Up, )= e "PY(x,1),

p=2lw/L , 1=0,...,N—1. (29)

In this representation the Hamiltonian is diagonal and
has eigenvalues

Ep=[1—cos(ap)]/azM s (30)

which are the lattice equivalents of the familiar p?/2M.
For a given initial wave function y(x), the time-
dependent solution is

P(x,t)=N"" Sexp[ —i(xp +1E,)]dy(p) .
p

In order to compare the discrete model with the version
in the continuum limit, we shall use Gaussian initial wave
functions as in (28):

Yo(x) < Sexp[ —(x +kL)?/2w?+ivM (x +kL)] ,
k

with the same width w and initial velocity v.

The (computer) algorithm to find the stochastic trajec-
tories is straightforward: Suppose the particle is at site »;
compute the wave function at the neighboring sites and
from that the transition matrix 7,4, ,. Since the Hamil-
tonian couples only nearest neighbors, only transitions
from n to n*1 are possible. Choose a small time step dt
to find the probability to jump or to stay at the same site.
These probabilities are given by dtT,,,, and
1—dty T,+,,,, respectively. To ensure that this last
probability is non-negative, the time step has to be chosen
sufficiently small, but is otherwise arbitrary. In practice
it is convenient to make the time step temporarily smaller
if the particle happens to have jumped to an unlikely po-
sition, such that the transition density to move away is
very big. Make the decision to jump or stay, using these
probabilities, and repeat the whole sequence as many
times as desired. To start, choose an initial position
X =na with probability a|y(x)|%

In Fig. 1 we show a sample of these trajectories for
different discretizations. The lattice size L =Na is used
to set the scale and the continuum limit is obtained by
taking N— o at fixed L. Figures 1(a)-1(c) are for
N =20, 100, and 500, respectively. In all cases the veloci-
ty v=0.75, the width of the initial wave packet
w/L =0.15, and the particle mass ML =5. The solid
lines are the stochastic paths followed by the particle on
the lattice; the dotted lines show the causal paths in the
continuum limit which started from the same initial
values. The classical trajectories in the continuum would
be x =x+vt, which is approximately valid for the causal
trajectories starting near the maximum of the Gaussian
wave packet, x,=0. Trajectories which do not coincide
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with the path followed by the peak of the wave packet are
affected by the quantum potential (6) which drives the
particles away from a linear path.

In the stochastic BBB approach, the particle may or
may not jump to a neighboring site. The probability of
jumping is guided by the wave function, which follows its
deterministic evolution. In order for the particle to be
able to keep up with this evolution, it must have
sufficiently many opportunities to jump. This requires a
sufficiently small time step. The paths in Fig. 1 were
computed with a time step dt /L =5X 107 °/N. The scal-
ing with 1/N is necessary to obtain the correct smooth
continuum limit (cf. the computation in the Appendix).

On the coarse lattice, N =20, the discreteness is clearly
visible, and the deviations from the continuum curves are
substantial. For increasing N, i.e., smaller lattice dis-
tance, it is seen that the particle follows more closely the
continuum curves, in accordance with the discussion in
Sec. III. This illustrates how the paths which are sto-
chastic on the lattice scale actually resemble smooth and
causal trajectories on much larger scales.

Another aspect of the BBB interpretation we wish to
emphasize in this paper is the possibility to give comple-
mentary (noncommuting) observables simultaneously a
beable status. In the above example this means that we
can also give trajectories for the momentum of the parti-
cle, or for arbitrary combinations of position and momen-
tum like x +p. Actually, the momentum trajectories are
very simple for a free particle because the Hamiltonian is
diagonal in this representation and consequently there
cannot be jumps in the value of the momentum,
T,,<5,,. Hence, a figure with momentum trajectories
for the free particle, whose position trajectories are
shown in Fig. 1, would show a set of constant values, dis-
tributed according to |(p)|%

Notice that the classical correlation between momen-
tum and position, given by the equality p =MXx, almost
never holds exactly. One obvious reason is that on the
lattice scale the particle either is at rest or it jumps with
infinite velocity. But also when one considers an average
velocity, such as in the continuum limit where the causal
relation x =S (x)/M holds, the classical relation between
momentum and change of position in general does not
hold. This is clear in the above example, where X
changes along the trajectories for almost all paths (cf.
Fig. 1), but where the momenta are constant. On the
average the classical correlation x =p/M holds as a
consequence of Ehrenfest’s theorem. If the approxima-
tion that the widths of the wave functions in position and
momentum representation can both be neglected is valid,
the wusual classical correlations are approximately
recovered for the most probable individual trajectories as
well.

B. Spinning particle in a magnetic field

We shall further illustrate the possibility to simultane-
ously assign trajectories to noncommuting observables
using a system for which it is not so obvious that any par-
ticular one has a preferred status. We consider a text-
book example of a system with discrete quantum num-
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bers, which is provided by a spinning particle in a mag-
netic field. This example also serves to show that trajec-
tories can be given for truly quantum-mechanical,
discrete, quantities like spin, or in this case, angular
momentum.

In the approximation that the kinetic energy can be
neglected (for large particle mass), the Hamiltonian for
the spinning particle is given by

H=uL, , (31

with the magnetic field chosen in the z direction and p
the magnetic moment. This Hamiltonian is diagonal in
the L, representation,

Hlm,)=pum,|m,) , m,=—1I,...,1. (32)

The integer eigenvalues m, of L, range from —/ to /,
with /(I +1) the eigenvalue of the total angular momen-
tum L>=L2+L2+L}.

With this Hamiltonian the trajectories for L, are con-
stant in time (the transition matrix for the m, values is
diagonal). Therefore, we focus on the components in or-
thogonal directions. A priori all orthogonal directions are
equivalent, but the corresponding components of L do
not commute.

To find the trajectories, we need the Hamiltonian and
wave functions in an arbitrary representation. It is a
straightforward exercise to express L, in a basis of eigen-
states of a linear combination of L, and L,:

L,=cos(a)L,+sin(a)L, , (33)

which we shall call the a representation. With the aid of
a computer, we can then again carry out the BBB
prescription to compute trajectories of L,. As initial
wave function we shall choose an eigenstate of L, with ei-
genvalue m?. With this choice the initial value of L, is
always m,=m? without uncertainty, but the initial
values for other components L,, a0, are unknown.
Only the probability for a particular value is known,
Pma=|<ma|m3)lz.

First, we consider a small value for the total angular
momentum, / =3. Only for large quantum numbers does
one expect classical behavior, and the system for /=3
should show strong quantum behavior. This is shown in
Fig. 2, where we plot trajectories of L, for a=0, 7/4,
and 7/2 [ie., L,=L,,(L,+L,)/V2,and L,]. The ini-
9=3, Initial values for other L, are

tial value of L, is m,
chosen with probability P, . In the point of view taken

in this paper, the beable m , actually follows a single tra-
jectory, one from each figure, and also one for any other
value of a not shown here. Of course, it is impossible to
predict which particular trajectories will be realized. The
discrete nature of L, is quite pronounced for this small
value of [ and there is only a vague indication of the con-
straint m , =m, cosa+m,sina between the trajectories of
the various components, which would classically be im-
plied by the relation (33). The same lack of exact correla-
tion would hold for operators which mutually commute
(but do not commute with the Hamiltonian). For in-
stance, we could have shown trajectories for the opera-
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tors L k=2,3,....
not impose the KS
k=2,3,....

As discussed in Sec. II B, we can-
constraint v(LX)=v(L,),

The trajectories for all L% follow from the
same transition matrix T,,,, but for each of the L%, they
follow from independently chosen transitions. Therefore,
it is clear that in general the actual trajectories do not
obey the KS constraint. It holds only in the case that the
wave function is an eigenstate of L .

Next, we consider a larger value for L2, such that we
expect stronger signs of classical behavior. In the classi-
cal limit / — o0, the components of the angular momen-
tum should show Larmor precession with frequency
@1 armor —M- Figure 3 shows some trajectories for a sys-
tem with /=20, again starting from an eigenstate of L,
this time with eigenvalue m2=16. Now one begins to see
that the trajectories become smoother and are concen-
trated around two oscillating paths:

FIG. 2. Three BBB trajectories (for clarity, two of the paths
are shifted by +0.2) for components of the angular momentum
orthogonal to L,. The total angular momentum L2=1(]+1)
has / =3 and time is in units of the magnetic moment u. (a)-(c)
are for L,=cos(a)L, +sin(a)L, with =0, 7/4, and 7/2, re-
spectively.

m,=Icos(uttd—a) .

The phase shift 8=arccos(m?/I), which characterizes
the two bunches of trajectories, is such that L, assumes
the initial value m%=16 for t=0. The period 27 /u is
characteristic of Larmor precession.

In particular, it is seen that the classical correlation be-
tween the (infinitely many) components L, is getting re-
stored: For all a, the trajectories are concentrated
around paths given by

my,=I1cos(uttd+a) .

These paths give the positions of the peaks in the wave
function. Of course, it is not surprising to find that
quantum-mechanical averages approximate the correct
classical behavior, since this is guaranteed by Ehrenfest’s
theorem. However, it is a virtue of the BBB interpreta-
tion that it can show how this comes about in a very ex-
plicit way.

It is a nice feature of the BBB dynamics that it allows

FIG. 3. The BBB trajectories for components of the angular
momentum as in Fig. 2, but now for a larger value of the total
angular momentum, / =20.



1816 JEROEN C. VINK 48

for a random bifurcation into two approximate classical
trajectories starting from the same initial value. The
wave function, e.g, in the L, representation, is peaked
along the two classical trajectories,

m, =1 cos(ut=*8) ,
where
8=arccos(m?/1)=~0.27

in Fig. 3. The paths followed by these peaks intersect at
ut =k (integer k). Looking at the distribution of a large
number of trajectories, one indeed recognizes this
double-peak structure of the wave function in the distri-
bution of the paths, and one would think from Fig. 3 that
the individual trajectories are like classical ones which
are afflicted with quantum fluctuations. One would then
expect that these fluctuations are getting suppressed for
larger values of / such that the smooth classical oscilla-
tions are recovered for / — .

This is almost true, except that the trajectories can bi-
furcate when the wave packet guiding the jumps of m,
intersects with the second, empty wave packet. Then
they can interchange their roles and the wave packet
which previously was empty can become the guiding one.
- This is illustrated in Fig. 4, where we plot a single trajec-
tory, together with the two classical paths starting from
the same initial value as the quantum path. One clearly
sees that the particle path first follows one wave packet
but switches to the second one at ut =3 =, when the
two packets intersect. This unpredictability of the path is
a salient feature of the stochastic BBB approach, which is
absent in a causal description.

Of course, such a bifurcation should not occur for
macroscopic observables. The reason we find it in the
above example is that the wave function is very special:
It has two peaks moving along classical paths, with
strong interference and large overlap between these wave
packets at ut =k when they intersect. This is a conse-
quence of choosing an exact eigenstate of L, as initial
state instead of an appropriate coherent state. When in-
terference effects are strong, the particle trajectory may
switch from one packet to the other. For macroscopic

FIG. 4. Bifurcation of the BBB trajectories for L,. The dot-
ted lines represent the classical paths m, =1 cos(ut=*d),

8~0.27; the solid line is one of the quantum paths from Fig.
3(c).

wave functions, interference and overlap between
different wave packets is strongly suppressed and bifurca-
tion of macroscopic trajectories is extremely improbable.

V. DISCUSSION

In this paper we have investigated a proposal for a
realistic interpretation of quantum mechanics which is a
generalization of Bell’s beable approach sketched in Ref.
[24]. Contrary to the expectation based on the usual as-
sertions that quantum mechanics is incompatible with
classical concepts, beables, on a microscopic level, it was
seen in Sec. II that such beable interpretations are in fact
very easy to give. The difficulty is rather that the per-
spective offered in that section allows for too many beable
interpretations which are compatible with quantum
mechanics on the level of observable, measurable proper-
ties. The only guideline we then have is that the beable
dynamics must reduce to classical dynamics in the ap-
propriate limit.

Even then, various versions of a beable interpretation
according to BBB are possible. In our preferred version
we compute trajectories for a maximal set of commuting
observables; Bell only considers a subset. In the causal
and stochastic interpretations one only considered posi-
tionlike quantities; we propose to assume that trajectories
are realized for all possible quantities, with simultaneous-
ly sharp values. Finally, there is the freedom to extend
the transition matrix 7 with a nonzero T°. This freedom
is reflected in the known possibility [17] to interpolate be-
tween Bohm’s causal and Nelson’s stochastic interpreta-
tions. In our view the most natural strategy is to consider
all possible maximal sets of commuting observables, with
the minimal choice for the transition matrix, T7°=0. Of
course, these choices are by no means compelling.

A feature which is central to our approach is that on a
fundamental level all physical quantities are assumed to
be discrete. Starting from quite different considerations
stemming from difficulties with black-hole entropy, this
point of view was also put forward in Ref. [27]. When all
quantities are discrete, one would also expect that time
should be discrete. In fact, one can further generalize the
discussion of Sec. ITA to a form which only assumes
(discrete) unitary evolution of the wave functions. How-
ever, this introduces further ambiguities, which are only
restricted by the requirement that the usual Schrodinger
evolution is recovered in the continuous time limit. This
seems to make a discrete time approach rather contrived,
and we have not pursued this interesting possibility in
this paper.

It is also worth stressing that, unlike the causal inter-
pretation, the BBB interpretation is not deterministic.
Even though the evolution of the wave functions is strict-
ly deterministic and time reversible, the actual trajec-
tories are stochastic on a fundamental level. This can
lead to a strictly unpredictable time evolution. This hap-
pens, for instance, if the small stochastic jumps take the
particle to a “‘neighboring” trajectory which deviates ex-
ponentially with time from the original one. This is the
case, e.g., if a wave packet splits up, or if it intersects
with one (or more) other wave packets, leading to large
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interference effects. An example of this switching from
one wave packet to another was shown in Fig. 4.

It is often suggested that beable interpretations of
quantum mechanics are in conflict with (general or spe-
cial) relativity [11,28,29]. On the one hand, the stochas-
tic evolution of the beables singles out a frame in which
the jumps to new values take place simultaneously. This
singles out an absolute time and a three-dimensional
space, which is the border between “past” space-time re-
gions, where the beables have acquired their actual
values, and the “future” with only probabilities. This
would obviously be at variance with special relativity.
Recently, a detailed argument has been presented in Refs.
[30,31] that a conflict between beable trajectories and
Lorentz invariance is unavoidable. On the other hand,
the BBB approach is sufficiently general to make it also
applicable to relativistic field theory in a Hamiltonian,
Schrodinger formulation. The fields should then be regu-
larized on a finite lattice, and should take discrete values.
Here the underlying dynamics of the wave functionals is
relativistically covariant (at least in the continuum limit)
and one can speculate that only this relativistic covari-
ance is relevant, whereas it is broken on the level of the
actual trajectories which evolve in a preferred frame.
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APPENDIX

In this appendix it is shown in some detail that the sto-
chastic trajectories with the minimal choice for the tran-
sition density T given in Eq. (12) reduce to the causal tra-
jectories of Bohm in the continuum limit a —0. We start
from the approximate form of the transition matrix given
in Eq. (24) above:

T, +1,=dt[S(an)])' /Ma , (A1)

which is valid for wave functions which are sufficiently
smooth on the lattice scale a. For definiteness, consider a

particle with position x=na at t=0, for which
[S(x)]'>0. Then only T,,,, and T,, are nonzero.
More precisely, we shall assume that S’ is approximately
constant on an interval (x,x +AL). This interval is very
small on a macroscopic scale, but contains many lattice
sites: N=AL /a is big. We shall further assume that S’
remains approximately constant in a macroscopically
small time interval At¢, which, however, contains many
time steps dt =At/N. Notice the scaling of dt with 1/N
which was mentioned in the main text.

Given these conditions, we can compute the expected
value for the position of the particle at t =At as well as
the dispersion. Writing

dt T, 1, =dt[S(x)] /Ma=p

and dt T,,,=(1—p) for all na € (x,x +AL), the expected
change in position after the time interval At is given by

N
X Pk(l__p)N—k

N
(ka)= 3 ka
k=0

=ap;ld;(p +@™,~1_,=Nap . (A2)

This gives the result stated in the main text, which is that
(Ax)=Na{dt[S(x)'/Ma}=At[S(x)]'/M , (A3)

which is equal on the average to the velocity of the causal
trajectories, (Ax)/At=~09,S(x)/M. The = sign is a
reflection of the assumptions on S’ we made in arriving at
this result.

Similarly, we can compute the dispersion in the aver-
age displacement:

disp(Ax)=[{(ka)*) — (ka )*]'/?

=a[N(1—p)]'?=aV2 AL —{(Ax))'?*. (A4

The continuum limit must be taken such that a —0 for a
fixed macroscopic value of L; therefore, it is seen that the
dispersion in Ax indeed vanishes <a 172 a5 claimed in the
main text. This completes the proof that the stochastic
BBB trajectories (with the minimal choice for T') reduce
to the deterministic Bohm trajectories in the continuum
limit.
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