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AN INFORMAL EXPOSITION OF PROOFS OF GODEL'S THEOREMS
AND CHURCH'S THEOREM

BARKLEY ROSSER

This paper is an attempt to explain as non-technically as possible the princi-
ples and devices used in the various proofs of Gédel’s Theorems and Church’s
Theorem.

Roman numerals in references shall refer to the papers in the bibliography.

In the statements of Godel’s Theorems and Church’s Theorem, we will employ
the phrase “for suitable L.”” The hidden assumptions which we denote by this
phrase have never been put down explicitly in a form intelligible to the average
reader.’ The necessity for thus formulating them has commonly been avoided
by proving the theorems fqr special logics and then remarking that the proofs
can be extended to other logics. Hence the conditions necessary for the proofs
of Godel’s Theorems and Church’s Theorem are at present very indefinite as
far as the average reader is concerned. To partly clarify this situation, we will
now mention the more prominent of these assumptions.

I. In any proof of Gédel’s Theorems or Church’s Theorem, two logics are
concerned. One serves as the “logic of ordinary discourse’” in which the proof
is carried out, and the other is a formal logic, L, about which the theorem is
proved. The first logic may or may not be formal. However L must be formal.
Among other things, this implies that the propositions of L are formulas built
according to certain rules of structure. Each formula is to consist of a finite
number (counting repetitions) of symbols chosen out of a set (finite or denumer-
ably infinite) which is given at the start; any symbol of the set may be used
more than once in any formula. Moreover the symbols have meanings at-
tached, in terms of which propositions of L may be interpreted. The rules of
structure of the propositions of L are supposed to be such that the interpretations
of the propositions of L will be declarative sentences (not necessarily true) of
“ordinary discourse.” If A is a proposition of L, and a certain sentence is the
interpretation of 4, then A is said to be the “expression in L’ of that sentence
or any sentence equivalent to it. In general, not all sentences can be ex-
pressed in L.

Received January 12, 1939.

1 It is my understanding from conversations with Gédel that an exact formulation of
these assumptions was to constitute part of the second part of the paper of which II is
the first part. Due to ill health, Gédel has never written this second half. However, in
III, Kleene gives an exact statement of a set of assumptions sufficient for his proof of
Godel’s First Theorem. Unfortunately they are phrased in terms of general recursive
functions, and are illuminating only to someone who is thoroughly familiar with the theory
of general recursive functions.

2 In the L’s which receive general attention, no method is apparent of expressing such
sentences as ‘‘Plato was mortal,” ‘“God is good,” etc.
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- II. Amongst the symbols of L must be one, ~, which is interpreted as ‘“not.”
That is, if A expresses in L a certain sentence, then ~4 expresses in L the con-
tradictory of that sentence.

ITI. For each positive integer, there must be a particular formula in L which
denotes that integer. Also, amongst the symbols of L must be some, called
variables, whose mode of interpretation is as follows. If a formula A of L
expresses a sentence S and if A contains symbols called variables, v, vs, - - -, v,,
then S contains variables.® -Moreover, if B is the formula got from A by re-
placing various of the »;’s of A by other symbols, then the sentence which B
expresses is got from S by making corresponding replacements for the variables
of 8. In particular, if the formula G of L with the symbol », called a variable,
expresses in L the sentence “z has the property @,” with the variable z cor-
responding to », and if F is got from G by replacing all the »’s of G by the for-
mula denoting the number n, then F expresses in L the sentence “n has the
property Q.”

IV. Also there must be a process whereby certain of the propositions of L are
specified as “provable.” The definition of “provable’ is always supposed to be
made without referring to the meanings of the formulas. However it was
always hoped that the set of provable propositions of L would coincide with
the set of propositions of L which express true sentences. Gédel’s Theorems
tell us that such cannot be the case. For Gédel’s First Theorem states:

For suitable L, there are undecidable propositions in L; that is, propositions F
such that neither F nor ~F 1is provable..

As F and ~F express contradictory sentences, one of them must express a
true sentence. So there will be a proposition of L which expresses a true sen-
tence, but nevertheless is not provable. This still leaves open the possibility
that all provable propositions of L may express true sentences. As the notion
of “truth of a sentence” is vague, it is usual to deal with weaker but more precise
notions. For instance, L is said to be “simply consistent’ if there is no proposi-
tion F such that both F and ~F are provable. Clearly, if L is not simply
consistent, then some provable proposition of L must express a false sentence.
However, some provable propositions of L may express false sentences even if
L is simply consistent. Tarski* showed this by constructing a logic L which
was simply consistent but in which one could prove the propositions expressing
each sentence of the following infinite set (with Q properly chosen)

Not all positive integers have property Q.

1 has property Q.

2 has property Q.

" 3 has property Q.

...............

3 [ am purposcly overlooking the complications due to the use of ‘‘apparent variables”
as being irrelevant to the present discussion.

4 Alfred Tarski, Einige Belrachtungen iber die Begriffe der w-Widerspruchsfreiheit und
der w-Vollstandigkeit, Monatshefte fiir Mathematik und Physik, vol. 40 (1933), pp. 97-112.



PROOFS OF GODEL’S THEOREMS AND CHURCH’S THEOREM 55

A logic L in which this latter situation does not occur for any property @ is
said to be w-consistent.

V. If F and ~F are both provable in L, then all propositions of L are provable.
So if L is not simply consistent, it is not w-consistent. So w-consistency implies
simple consistency. In fact, the non-provability of any formula whatever of L
implies the simple consistency of L.

VI. There is a symbol, D, of L such that if the formula 4 expresses the sen-
tence S and the formula B expresses the sentence T, then A DB expresses the
sentence “If S, then T.” Also the definition of “provable” shall be such that
if A and A DB are provable then so is B.

This completes our list. The list was compiled for expository purposes only.
Hence the list suffers the double defect of not containing absolutely all necessary
assumptions, and of containing some assumptions which may not be necessary.
Also the assumptions are not always stated with strict accuracy, on the ground
that readers who know of cases not covered by our simplified versions of the
assumptions will know the corrections that need to be made, and that readers
who do not know of such cases will not fall into error thereby.

Three proofs of Gédel’s First Theorem (see above) will be considered in this
paper, namely Godel’s proof (II, Satz VI), Rosser’s proof @V, Thm. II), and
Kleene’s proof (III, Thm. XIII). These proofs will be referred to as GGy, RG,
and KG, respectively. All three use the general assumptions listed above.
In addition, GG, assumes that L is w-consistent, RG; assumes that L is simply
consistent, and KG, assumes a more complicated type of consistency, roughly
equivalent to w-consistency.

Godel’s Second Theorem states:

For suitable L, the simple conststency of L cannot be proved in L.

Godel proves this statement (II Satz XI) with the special assumption of
simple consistency. His proof will be referred to as GGe..
Church’s Theorem states:

_ For suitable L, there ezists no effective method of deciding which propositions of L
are provable.

The statement is proved by Church (I, last paragraph) with the special
assumption of w-consistency, and by Rosser (IV, Thm. III) with the special
assumption of simple consistency. These proofs will be referred to as CC and
RC respectively.

Clearly the existence of CC or RC presupposes a precise definition of “effec-
tive.” “Effective method” is here used in the rather special sense of a method
each step of which is precisely predetermined and which is certain to produce
the answer in a finite number of steps. With this special meaning, three different
precise definitions have been given to date.® The simplest of these to state

5 One definition is given by Churchin I. Another definition is due to Jacques Herbrand
and Kurt Godel. It is stated in I, footnote 3, p. 346. The third definition was given
independently in two slightly different forms by E. L. Post, Finite combinalory processes—
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(due to Post and Turing) says essentially that an effective method of solving a
certain set of problems exists if one can build a machine which will then solve
any problem of the set with no human intervention beyond inserting the ques-
tion and (later) reading the answer. All three definitions are equivalent, so it
does not matter which one isused. Moreover, the fact that all three are equiva-
lent is a very strong argument for the correctness of any one.

All the proofs GG;, KG,, RG,, GG, CC, and RC use Godel’s device, which
we now describe, for numbering formulas. First assign numbers to the symbols
of L in any way that seems suitable. For instance Godel discusses a logic
involving the symbols

~,v, 11, 0, f, (’ )y

and an infinite set of variables in each of an infinite set of types. He assigns
numbers to these symbols as follows: 1t00,3tof,5to ~,7toy,9toII, 11 to
(, 13 to ), and p; (where the p’s are primes greater than 13) to variables of
type n. '

Having assigned numbers to symbols, we next assign numbers to formulas
as follows. Let n, ny, - - -, n, be the numbers of the symbols of a formula F
in the order in which they occur in F. Let pi, e, - - -, p. be the first s primes
in order of increasing magnitude (counting 2 as the first prime). Then the
number assigned to F willbe py*-ps?- .. . - p.*. Forexample, one of the provable
formulas of the logic which Gédel used is

~@EI((~(z(f)))v(z(0)))),

(z and y being variables of types 2 and 1 respectively). The numbers of the
symbols of this formula are successively 5, 11, 289, 9, 11, 11, 5, 11, 289, 11, 3,
17, 13, 13, 13, 7, 11, 289, 11, 1, 13, 13, 13, 13. So the number of the formula
itself is 2°.8".5™.7°.11".13".17°.19".23".29".31°.37". 41°.43".47%.53'.
59'.61%.67".71.73":79".83". 89",

We see that for every formula, a number is assigned. However, not all
numbers are assigned to formulas.® If a number is assigned to a formula, the
formula can always be found as follows. Factor the number into its prime
factors. Then the number of 2’s occurring in the factorization is the number
of the first symbol of the formula, the number of 3’s occurring in the factorization
is the number of the second symbol of the formula, the number of 5’s occurring
in the factorization is the number of the third symbol of the formula, ete.

When numbers have been assigned to formulas, statements about formulas
can be replaced by statements about numbers. That is, if P is a property of
formulas, we can find a property of numbers, @, such that the formula A has the

formulation 1, this JOURNAL, vol. 1 (1936), pp. 103-105, and A. M. Turing, On computable
numbers, with an application to the Entscheidungsproblem, Proceedings of the London
Mathematical Society, ser. 2 vol. 42 (1937), pp. 230265 (see also the correction to the above,
in the same journal, vol. 43 (1937), pp. 544-546). The first two definitions are proved
equivalent in 1. The third is proved equivalent to the first two by A. M. Turing, Com-
putability and M-definability, this JourNaL, vol. 2 (1937), pp. 153-163.

¢ The number 4 is not assigned to any formula; for 4=22, and so the first and only symbol
of the formula must have the number 2 assigned to it, and no symbol has 2 assigned to it.
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property P if and only if the number of A has the property €. Throughout the
rest of the paper, P will signify a property of formulas, and @ will signify the
corresponding property of numbers. 'That is, @ will be the property of numbers
such that we can use the statements “A has property P’ and ‘“‘the number of 4
has property @” interchangeably.

Many statements about numbers can be expressed in L, even though all
cannot. In particular, if P is properly chosen, we can often express “z has the
property @”in L. If zis taken to be the number of a formula of L, we are then
expressing in L a statement about a formula of L. This element of circularity
is capitalized in the following basic lemma:’

LeEMMA 1. Let “z has the property Q' be expressible in L. Then for suitable L,
there can be found a formula F of L, with a number n, such that F expresses “n has
the property Q.” That is, F expresses “F has the property P.”

We now call attention to an extra assumption implicit in the “for suitable L"
of Lemma 1,° namely that “2=¢(z, z)”’ be expressible in L, where ¢(z, y) is the
function described below.

DEerINITION. ¢(z, y) is the number of the formula got by taking the formula
with the number z and replacing all occurrences of » in it by the formula of L
which denotes the number of y.

We now give the proof of Lemma 1. Assume “z has the property Q” and
“z=¢(z, z)"” are expressiblein L. Then“¢(z,z) has the property Q" is expressible
in L® Let G be the formula of L which expresses “¢(z, ) has the property @.”
G has a number, n. Now get F from G by replacing all v’s of G by the formula
of L which denotesn. Then F denotes “¢(n, n) has the property @’ (cf. Assump-
tion III). However (cf. the definition of ¢(z, y¥)), ¢(n, n) is the number of F,
because F was got by taking the formula with the number n and replacing all
occurrences of v in it by the formula of L which denotes n. So F expresses “the
number of F has the property @,”” that is “F has the property P.”

To use Lemma 1, one must know that “2=¢(z, z)”’ is expressible in L. Gaodel
proves this for a large class of L’s by proving:

(a) ¢(z, y) is “rekursiv’’ (II, pp. 179-188).

(b) If Y(zy, zo, - - -, ,) is “rekursiv,” then “z=y(21, 25, - - -, ,)”’ is expressible
in L (11, Satz V).

The proofs of both (a) and (b) are very complicated and technical, and will
not even be sketched here.

Lemma 1 is basic in GG;, GG;, RG,, and RC, but is not used in CC or KG;.

We now outline GG;, GG;, RG;, and RC. Each proof depends on the choice
of a suitable property P to be used in Lemma 1. Gddel chooses for P the
property of not being provable in L. So if we denote (as Goédel does) “the

7 This lemma is due to Gédel. On pp. 187-188 of II, he proves it for a particular Q.
However he does not state the lemma explicitly.

8 This assumption was not included in the original list because at that point the idea of
the number of a formula had not yet been explained.

® Note that the statement in question is equivalent to “‘there is a z such that z=¢(z,z)

and z has the property Q.”
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formula with the number z is provable in L” by “Bew(z),” then “z has property
Q” is equivalent to “not-Bew(z).”

By an extensive argument involving ‘“rekursiv’’ functions, Gédel shows that
for a large class of L’s:

(c) “Bew(z)” (and hence ‘“not-Bew(z)”) is expressible in L.

(d) If L is w-consistent and if the formula expressing “Bew(z)” is provable,
then “Bew(z)” is true.

(e) If “Bew(z)” is true, then the formula expressing “Bew(zx)” is provable.

Now (Lemma 1), let us find a formula F with the number n, such that F
expresses ‘“‘not-Bew(n).”"’

Lemma 2. If L is simply consistent, then F is not provable in L.

For suppose F to be provable. That is, the formula with the number
n is provable. That is, Bew(n). So by (e), the formula which expresses
“Bew(n)” is provable. However, F expresses ‘“not-Bew(n),” and so ~F ex-
presses “Bew(n)”’ (Assumption II). So ~F is provable. However we assumed
F provable, so that L is not simply consistent. So if L had been simply con-
sistent, F would not have been provable.

LemMa 3. If L is w-consistent, then ~F is not provable tn L.

For suppose L to be w-consistent and pretend that ~F is provable. ~F
expresses “Bew(n).” So by (d), Bew(n). That is, F is provable. So L is not
simply consistent. However w-consistency implies simple consistency (Assump-
tion V), so our pretense that ~F could be provable has to be false.

As w-consistency implies simple consistency, Lemma 2 and Lemma 3 together
give GG, (which assumed w-consistency).

GG, runs as follows. Let A be a provable proposition of L, and let m be the
number of ~A. If Bew(m), then both A and ~A are provable, and L is not
simply consistent. On the other hand, if L is not simply consistent, all proposi-
tions of L are provable, including ~A4, so that Bew(m). Hence “not-Bew(m)”
and “L is simply consistent” are equivalent. So Lemma 2 is equivalent to

“If not-Bew(m), then not-Bew(n),”

since n is the number of F. Let Wid be the formula of L which expresses
“not-Bew(m).” F is the formula of L which expresses “not-Bew(n).” So

' WidDF ‘
expresses Lemma 2 in L (Assumption VI). Now the proof of Lemma 2 can be
carried out in a great many logics, so that in those logics

WidDF

is provable. Then if Wid were provable, F would be provable (Assumption VI).
So Wid is not provable if L is simply consistent (by Lemma 2), which is what
Gaodel’s Second Theorem states. :

19 That is, F expresses ‘‘F is not provable.” Naturally one would expect F to have
cevain peculiarities.
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For RG,, Rosser chooses a property, Prov(z), which differs very slightly
from Bew(z)." By an argument involving a generalization of “rekursiv”
functions, Rosser proved that for a large class of logics:

(f) Prov(z) is expressible in L.

(g) If L is simply consistent, then:

(1) If the formula expressing ‘Prov(z)” is provable, then ‘not-
Bew(Neg(z))” is true.”

(2) If ~(the formula expressing ‘“Prov(z)”) is provable, then “Bew(z)”
is false.

Now (Lemma 1) let us find a formula F with the number n, such that F
expresses ‘“‘not-Prov(n).” Assume that L is simply consistent. Now ~F ex-
presses “Prov(n).” So if ~F is provable, then, by (g)(1), ~F is not provable.
Likewise, as F expresses ‘not-Prov(n),” F is ~(the formula expressing
“Prov(z)”’). So if F is provable, then, by (g)(2), F is not provable. This
completes RG;.

For RC, we start out by assuming that L is simply consistent and that there
is an effective method of deciding which propositions of L are provable. As
the Herbrand-Godel definition of “effective method’ involves a generalization
of “rekursiv,” Rosser was able to prove for a large class of logics, by use of this
generalization of “rekursiv,” that there must be a property of numbers, Prov(z),
such that:

(h) “Prov(z)” is expressible in L.

(1) The formula expressing “Prov(z)”’ in L is provable in L if and only if the
formula with the number z is provable in L.

(j) Either the formula expressing ‘“Prov(z)” or the formula expressing
“not-Prov(z)”’ is provable in L.

Now (Lemma 1) let us choose F with the number n, so that F expresses
“pot-Prov(n).” By (j), either F or ~F is provable. If F is provable, then,
by (i), ~F is provable, contradicting our assumption of simple consistency.
If ~F is provable, then, by (i), F is provable.

The proofs KG; and CC do not involve Lemma 1.

We now outline KG,. In III, Kleene shows how general recursive functions
(generalizations of “rekursiv”’ functions) can be defined by positive integers.
He further shows that in a large class of logics, “y defines a general recursive
function” can be expressed. Let L be one of these logics. Then one can find a
general recursive function f(z) such that:

(k) As z runs over the positive integers f(z) runs over those values of y
such that the expression of “y is a general recursive function” is a provable
formula of L. ’

That is, f(z) enumerates a certain class of numbers which define general
recursive functions, and therefore enumerates a class of (general recursive)
functions. To these the diagonal process is applied to get a new function.
Explicitly, Kleene defines g(z) as 14(the value, for the argument z, of the
general recursive function defined by f(z)). Then g(z) is a general recursive

u Bew(z) and Prov(z) are equivalent if L is simply consistent and only then.
12 If z is the number of a formula 4 then Neg(z) is the number of the formula ~A.
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function and is defined by an integer m. Let F express “m defines a general
recursive function.” Then F expresses a true statement, and ~F a false one,
so that ~F cannot be provable if suitable consistency assumptions are made.
If F were provable in L, then by (k) there would be an integer n such that
f(n)=m. Then g(n)=1+(the value, for the argument n, of the general recur-
sive function defined by f(n)) =1+ (the value, for the argument n, of g(z))=
14g(n). This contradiction shows that F cannot be provable.

KG; may be contrasted with GG; and RG; by saying that GG, and RG,
resemble the Epimenides paradox, whereas KG; resembles the Richard paradox.

We now outline CC. In I, Church proves of a certain set of sequences that
there is no effective method of solving the problem: Given a sequence of the
set, does 2 occur in it or not?

Now for a large class of logics, ““2 occurs in the sequence s of the set’” can be
expressed in L by a formula H and moreover, if L is w-consistent, then H is
provable if and only if what it expresses is true. So an effective method of
deciding whether a given formula is provable would allow one to decide effec-
tively whether or not H is provable, and hence to solve the problem of whether 2
occurs in a given sequence.

I wish to express here my gratitude to various members of the Department
of Mathematics of Cornell University who obliged me by critically reading
various drafts of this paper.
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