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‘ QCD: the most beautiful part of the Standard Model |

SM= U(1)® SU(2) ® SU(3)cotonr

The 1847 parameters of the Standard Model

e 3 coupling constants — Qg

e 4 parameters of the CKM matrix The complete dynamics of QCD can di-
rectly be derived from the gauge—group

e Higgs mass and VEV structure (e.g. Colour Factors)

e 12 fermion masses

e leptonic mixing sector 777
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‘ QCD: the most ugly part of the Standard Model |

SM=U(1)@® SU((2) R JETSET
The 18+7 parameters of hadronization models

e model dependence: QCD is the theory of quarks and gluons,
ARIADNE, HERWIG, while we only observe hadrons!

PHYTHIA/JETSET o :
Hadronization is a non—perturbative pro-

. cess, which is not understood from first
e cut—off in parton shower

principles!
e heavy quark suppression Hadronization effects can only be estima-
ted from phenomenological models (ge-
e fragmentation functions nerators, power corrections)

e particle decays
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‘ 1. Lesson I

Due to hadronization, expe-
rimental tests of pQCD are
more complicated than one

would expect from the mere
gauge—group structure
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‘ The Physics Environment | |

DELPHI

eTe” — qgq — hadrons

~ 1 million hadronic events at
LEP1 (ECM = 91.2G€V)

~ 10.000 hadronic events at LEP2
(Ecy = 130 — 208 GeV)
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The Physics Environment I
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‘ Momentum Spectra: Theory I

The momentum spectra can not be calculated directly in perturbative QCD since it is

not infrared safe!
1 dn

Nevtd_p

One needs to introduce an additional cut-off (Qo)
Local Parton Hadron Duality (LPHD) states:

hadronic spectra o partonic spectra with (Jg & Mnadron

Eey91-200GeV This partonic momentum
spectra exhibits universal
behavior at low momentum
due to coherent emission of

soft gluons!

dn/din p
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Momentum Spectra:

Experiment
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The universal behavior at low momenta shows up in both, eTe™ and pp collisions!
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‘ 2. Lesson I

coherence matters |
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‘ Why study quark and gluon jets? |

e Probability of radiation/splitting is governed by

colour factors:
Ca x ‘@@%

2 2

CFOC‘%

e Colour factors are the Casimir operators of the
underlying symmetry group.

e Difference between quark and gluon jets:

Ca _ 3 __
A =103 =225
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‘ Ratio of gluon and quark jet—mutliplicities |

Some measurements of the gluon— quark jet multiplicity ratio r,,:

CLEO Ejet < 3.5GeV 1, = 1.04+0.02 + 0.05
HRS Ejet = 9.7GeV 1, = 1.29 + 0.2(stat.) 105} (syst.)
TASSO Ejot = 11GeV rp ~ 1.
0.06
OPAL Ejet = 24.5GeV 7, = 1.02 £ 0.047 0
OPAL Ejet = 24GeV rn = 1.25 4+ 0.02 £ 0.03
ALEPH Ej.t = 24GeV ryp = 1.249 4 0.084 4 0.022
DELPHI Ejot = 24GeV rn = 1.241 4 0.015 £+ 0.025
OPAL Ejet = 39GeV rn = 1.552 + 0.041 + 0.061

e what about soft tracks?

e what sets the scale?
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‘ Event-Multiplicity: Prediction by Eden et al.(1) |

e Prediction by P.Eden, G.Gustafson & V.Khoze for gluon-gluon-events:

dNgq(L') - CadNgg(L)
dL’ Cr dL

with Lzlog% and L' =L+11/6 —3/2

e Constant of integration left free
— Constant of integration can be determined from measurement of IV,

— Here: CLEO-measurement of NV, in the decay
Xo(J =2) = gg at E.p, = 9.9132GeV

e N,; taken from several measurements of different experiments at various /s
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‘ Event-Multiplicity: Prediction by Eden et al.(2) |

e Multiplicity of three-jet-events:

1
Nygg = Ng (chiv KLu) + §Ngg("‘3Le)

e Coherence effects are taken into account by the choice of scale variables

FICP, Vanderbilt University, 5.-10.3.2001 QCD Results from DELPHI Oliver.Passon@CERN.CH



‘ Analysis of whole Three-Jet-Events |

6,=6,=180° - 1/26,

6,=180° - 1/26,

e All events are clustered into three
jets (NO Yeut)
e Selection of symmetric events

e = one angle characterizes the
whole event

.9
2 SqgS3g __ sin“ 6 /2
¢ &8 Pr = Sq7 8(1—|—c089/2)2
e essentially no gluon identification

necessary!
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‘ 3—jet multiplicities and C'4/Cpg |
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‘ 3. Lesson I

coherence really matters |
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‘ Determination of a, with event shapes |

Finite perturbative calculations can be obtained for collinear and infrared (CIS)
save quantities, like

Thrust = max
n

(Zz |ﬁ’t ) ﬁ‘) _ Zz |ﬁz ' ﬁthrust‘

fixed order calculation:

1-T) = (O‘Q(;”)) A+ (0‘32;“)> 2 B+ A-27 - by - log(112/Q%)] + O(unknown)

also NLLA and matched calculations available for many observables!
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‘ The Renormalization Scale Problem I

The renormalization scale is an unphysical parameter. It enters in the renormalization
of the theory, and does not drop out because the expansion in «y is truncated.
1+ may be chosen according to one of the following recipes:

e 1= (): “physical scale”

o B+ A 21 -by-log(p?/Q?) = 0: effective charge (ECH, RSI) 5—22 = exp _2Afjrbo

e treat i as an free parameter for each observable: experimentally optimized scale
kle)

e 5, = 0: principle of minimal sensitivity (PMS)

Theoretically no scale—choice is preferred, since only changes of O(a?) are introduced
by this change. In NLO calculations a scale-change is equivalent to a renormalization—
scheme—change.
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‘ The Hadronization Problem I

As mentioned above: QCD applies directly only to quarks and gluons. Two ways of
hadronization corrections

e Monte Carlo Method: Inside the generator a parton shower develops according to
pQCD, before turned into hadrons.

MOparton level

DATAhadron level °
MChadron level

— DATAparton level

e Power Corrections: IR renormalon ambiguity in pQCD should be canceled by
non—perturbative effects. This allows for a QCD inspired parameterization (aq) of
hadronization effect.

something
<yhad> — <ypert> +
Q
1do st
= F_(y—=
O'dy P t(y Q)
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‘ Event shape distributions and optimized scales |
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‘ Event shape distributions and optimized scales |

Second Order fits
with  experimentally
optimized scales to
distributions allow a
consistent determina-
tion of o!
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power corrections to

mean values

Energy dependence
of event shape means
can be described by

Observable (arbitrarily normalized)

pPQCD (1 = Q) and |

power corrections.
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‘ Are power corrections purely non—perturbative? |

- DEL PHI

® 1-Thrust
| A Major
+ C-Parameter

h vis

S VIS

— X By
- A B

| % M, 2E_2E def.
| [ M2/E, 2E def.

there is a correlation between the relati-

ve size of the second order contribution

(B/A) and the size of power corrections

(~C/Q)

= power corrections can not be purely
non—perturbative
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‘ mean values with effective charge scale I

Energy dependence
of event shape means
can also be described
by pQCD alone with
a proper scale choice.
= For this inclusive
observable hadroni-
zation effects seem to
be rather small !
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The “Running” of (1 —1T)

20
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, This allows a consistent description of
18 |- « DELPHI
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‘ 4. Lesson I

A clever scheme choice helps
to get more benefit from the
perturbative calculations
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‘ The 4 lessons we have learned I

1. Due to hadronization experimental tests of pQCD are more complicated
than one would expect from the mere gauge—group structure

2. coherence matters: soft particles are coherently emitted from the whole colour charge

3. coherence really matters: 3—jet multiplicities can be described by a p_-like scale
(C'4/CF measurement)

4. oy :A clever scheme choice helps to get more benefit from the perturbative
calculations
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