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Th& article (Part III) deals with the early applications of wave mechanics to 
atomic problems--including the demonstration of the formal mathematical 
equivalence of wave mechanics with the quantum mechanics of Born, Heisenberg, 
and Jordan, and that of Dirac--by Schr6dinger himself and others. The new 
theory was immediately accepted by the scientific community. 

13. THE SCHEME STARTS TO WORK 

In his letter of January 29, 1926 to Sommerfeld, Schr6dinger, after referring 
to his first communication (on the hydrogen atom), mentioned: "I have 
since translated a few further mechanical problems into the conceptual 
scheme. As far as my mathematical methods suffice, everything develops in 
the nicest way; and it is still not  a stereotype of the old quantum rules, but 
differs from it in characteristic points. ''(3H) He then explained in a few sen- 
tences the results: (i) on the linear oscillator; (ii) on the rotator in three 
dimensions; and (iii) on the free motion of a mass point. Finally, he stated 
the problems that had to be treated next in the new theory, i.e., "besides 
the evaluation of important special cases--like the Stark effect, the Zeeman 
effect, and the relativistic Kepler motion--the establishment of a rule for 
the intensity and polarization which must replace the correspondence 
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principle. ''(311) He had already begun the investigation of parts of these 
problems and would complete and publish them in the following months. 
The results constituted the first tests and confirmation of the theory of 
wave mechanics, which had originally been derived for the specific case of 
calculating the energy states of the hydrogen atom. 

13.1. The Oscillator in Wave Mechanics 

The most important content of undulatory or wave mechanics could 
be expressed in the form of the general, second-order differential equation, 

, 87~ 2 
div grad ~ +--~- ( E -  V) ~b = 0  (113) 

for the wave function ~b describing atomic systems of arbitrarily many 
degrees of freedom. Equation (113) took on a well-defined shape, if the 
potential energy V of the system was given as a function of, say, its f 
position and f momentum or velocity coordinates. The differential 
operation "div grad" had to be interpreted as operating in an f-dimensional 
Riemmannian space, with the line element 

ds 2 = 2~(qk, Ok) dt~ (114) 

where ,~ denoted the kinetic energy of the system when expressed as a 
function-of the position and velocity coordinates, qk and Ok, k = 1, ...,f. 

In figuring out the applications of wave mechanics beyond the non- 
relativistic hydrogen problem and the hydrogen atom in a magnetic field, 
Schrrdinger soon alighted on the problem of the linear oscillator. (312) This 
problem had played a distinguished role in the history of quantum theory, 
because it was the quantization of the linear oscillator that provided the 
starting point for the entire theory. Schrrdinger also knew that the result of 
any new treatment of the oscillator had to coincide more or less with the 
one presented by Max Ptanck as early ,as December 1900; it had especially 
to yield the famous, repeatedly substantiated blackbody radiation law. 
Whether this result would be obtained by the wave mechanical method 
could not be considered as being obvious; hence, even the solution of a 
problem as simple as the one-dimensional linear oscillator provided a 
crucial test of the new scheme, in which the quantization was not imposed 
directly but rather followed via applying boundary and uniqueness con- 
ditions on the wave function satisfying Eq. (113) in that special case. 

Evidently, in the case of the one-dimensional linear oscillator, the 
kinetic energy ~ could be written as 

~=~O ~ (115) 
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provided the single position coordinate q was chosen to be the elongation 
times the square-root of the oscillating mass. From Eq. (114) it then 
followed immediately that the line element, i.e., 

ds 2 = 0 2 dt 2 (116) 

defined a (one-dimensional) Euclidean space. As a consequence, the 
second-order derivative term in Eq. (113) simply redued to the second- 
order derivative with respect to q, hence 

d20 
div grad ~ -- dq 2 (117) 

Further, the potential energy V depended only on the position variable q 
and the oscillator frequency v0, that is, 

V(q)=2n2v~q 2 (118) 

On inserting Eqs. (117) and (118) into Eq. (113), Schr6dinger arrived at 
the equation 

with 

d2tp + (a - bq 2) ~ = 0 
dq 2 (119) 

8n2E 
a =  h--7-- (l19a) 

and 

b = 16n4vg 
h2 (l19b) 

to describe the one-dimensional linear oscillator in wave mechanics. 
In his notebook on "Eigenwertproblem des Atoms. I" (on p. 45), 

Schr6dinger had indicated how to transform Eq. (119) into the Laplacian 
equation 

d 2 ~ l d ~  ( a  b) 
dx 2 ~x--~x + --~x--4 tp=0 (120) 

by means of the transformation 

qZ=x (121) 
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Equation (120) had basically the same form as the one describing the 
Kepler problem; he then wrote down the solution along the lines which 
had worked before in the case of the nonrelativistic hydrogen atom. He 
immediately added that the very same solution followed from another, 
rather different path, if one transformed Eq. (119) into the differential 
equation for the Hermitian orthogonal functions, referring at this point to 
Courant and Hilbert's Methoden der mathematischen Physik. (313) In the 
published paper, i.e., the second communication on "Quantisierung als 
Eigenwertproblem," he suppressed the first step and presented only the 
solution according to Courant and Hilbert. (314) However, at a later point in 
his paper, Schr6dinger recalled his original solution in a footnote, in which 
he wrote: "Moreover, the one-dimensional oscillator leads to the same 
equation [-i.e., a Laplacian equation similar to the one for the hydrogen 
atom] if q2 is taken as variable. I originally solved the problem directly in 
that way. For the hint that it was a question of Hermite polynomials, I 
have to thank Herr E. Fues. ''(315) 

The "equation for Hermitian polynomials" mentioned by Schr6dinger 
was of course 

dZY t- ( 1 - x 2 ) y + 2 y = 0  
dx 2 

(122) 

an equation quoted in Courant Hilbert (on p. 261, the page quoted by 
Schr6dinger in Notebook/, p. 45, and in the paper--Ref. 256--on p. 515), 
together with its complete set of continuous and (in the entire region 
- ov ~< q ~< + oo) finite solutions, y(x), the Hermitian orthogonal functions 
exp(-x2/2)  Hn(x), each of which is associated with one of the proper 
eigenvalues 2 = 0 , 2 , 4 , 6  ..... (316) The wave equation (119) for the one- 
dimensional linear oscillator assumed the form of Eq. (122) after the trans- 
formation of the position coordinate, namely 

x=  q , ~  (123) 

Then Schr6dinger obtained the new equation 

dx2+(l-x2) ~,+ -1  0=0 (124/ 

which implied the condition for the eigenvalues: 



Schr6dinger and the Rise of Wave Mechanics 111 

o r  

a 

x/~ = 1, 3, 5,..., 2n _+ 1 (126) 

In his published paper, Schr6dinger also immediately copied from 
Courant-Hilbert  the general formula for the Hermitian polynomials, i.e., 

Hn(x)  = ( -  1) n exp(x 2) dn exp(-x~) (127) 
dx 2 

and the equations for the first five polynomials, i.e., 

Ho(x)  = 1, 

Hz (x )  = 4x  2 - 2 

H4(x)  = t6x 4 -  48x2+ 12 

H I ( x )  = 2x 

H3(x  ) = 8x 2 - 12x (t28) 

[see Ref. 256, p. 515, Eqs. (27) and (27"), and Ref. 313, p. 76, Eqs. (59) 
and (63)]. 

All that he had to do after that step, in order to find the eigenvalues of 
the one-dimensional linear oscillator in wave mechanics, was to insert the 
expressions (119a) and (t19b) into Eq. (126). This yielded the result 

(2n+ 1) 
En = ~ h v o ,  n=0 ,  1, 2 .... (129) 

whereupon Schr6dinger commented in his publication: "Thus as quantum 
levels appear so-called 'half-integral' multiples of the 'quantum of energy' 
peculiar to the oscillator, i.e., the odd multiples of hvo/2. The intervals 
between the levels, which alone are important for the radiation, are the 
same as in the former theory. "(317) 

The agreement of the result for the energy eigenvalues of the one- 
dimensional linear oscillator with the existing empirical tests satisfied 
Schr6dinger immensely. However, he was still more ambitious, because his 
solutions of the wave equation (124) still contained additional information 
in the wave functions On, which were given by the expressions 

- 2rcq v-2, 130) ~ ( q )  = exp ( 2 ~ 2 h ° q 2 ) H n  ( ,qf~) n=0 ,  t, 2,3 ( .... 

as functions of the position variable q. From the explicit formulas, given in 
Courant-Hilbert  for Hermite polynomials, Hn(x),  Schr6dinger could derive 
several conclusions, if he evaluated them numerically. (318) This he did in a 
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set of notes, entitled "Oszillatorschwingungen" ("Oscillator Vibrations"); he 
especially calculated the roots, maxima, and minima of several 
polynomials3319) SchrSdinger found the classical amplitude of the nth 
vibration to be 

x ~ n  = 2-~ ~v~ X/ /~2 1 (131) qn = 2~cv ° 

He wrote down this equation, without justifying it, in the second com- 
munication of Feburary 1926. Several months later, however, SchrSdinger 
presented full details in a note entitled "Der stetige ~)bergang yon der 
Mikro- zur Makromechanik" ("The Continuous Transition from Micro- 
to Macro-Mechanics"), which he submitted to NaturwissenschaftenJ 32°) 
In this note he especially demonstrated "in concreto the transition to 
macroscopic mechanics, by showing that a group of eigenvibrations of high 
order-number n ('quantum number') and of relatively small order-number 
differences ('quantum number differences') may represent a 'particle' 
which is executing the 'motion,' expected from the usual mechanics, i.e., 
oscillating with the frequency Vo .''(321) 

13.2. The Rotator and the Diatomic Molecule in Wave Mechanics 

Immediately after treating the linear oscillator, SchrSdinger started 
out with what he called "the simplest conceivable example of vibration 
theory"(322): the rotator having an axis fixed in space. It corresponded, on 
the one hand, to a one-dimensional problem, hence the line-element was, of 
course, Euclidean in the angle ¢. On the other hand, it involved no poten- 
tial energy at all. Consequently the equation of vibration, or the wave 
equation, assumed the form, 

1 d2O 892E 
A d¢2 + - - ~  ~ = 0  (132) 

where A denoted the moment of inertia. Equation (132) evidently possessed 
the solution 

sin \ .~ - - - -~ - -  

cos \q  

(133) 
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The boundary condition, demanding the uniqueness and the continuity of 
the solution throughout the entire range of the angle ~b, ted to the equation 

n2h 2 
En = 87r2 A (134) 

with n assuming integral values ~323) 

n =0,  1, 2, 3 .... (134a) 

By Eq. (134) the energy values of the rotator were restricted to a 
discrete sequence, as was formerly the case through the quantization rule in 
the Bohr-Sommerfeld theory of the same system, which had been 
suggested--even before Bohr and Sommerfeld--by Paul Ehrenfest/324) One 
had also tried to discuss physical examples of microscopic rotating systems; 
thus one associated energy difference from Eq. (134) with the band spectra 
or the specific heats of diatomic molecules, achieving rather mixed success. 
Schr6dinger now declared frankly: "No meaning, however, can be attached 
to the result of the application to band spectra .... It is a peculiar fact that 
our theory gives another result for the rotator with free axis. And this is true 
in general. It is not allowable in the applications of wave mechanics, to 
think of the freedom of movement of the system as being more strictly 
limited, in order to simplify calculation, than it actually is, even when we 
know from the integrals of the mechanical equations that in a single 
movement certain definite freedoms are not made use of. ''(325~ 

While a diatomic molecule could not, even in a weak approximation, 
be represented by a rigid rotator with fixed axis, a rigid rotator with free 
axis may be considered a suitably simplified model of the atomic system. 
Schr6dinger discussed such a model in his paper, where he used the two 
polar angles, 0 and ~b, made by the line connecting the two nuclei (of the 
molecule), as position variables. In those variables and their canonically 
conjugate (angular) momenta, Po and p~, the kinetic energy was expressed 
a s  

P; (135) 
3 = ~  Po + sin2 0 

Equation (135) also described the kinetic energy of a point particle whose 
motion is constrained to a spherical surface. The Laplacian operator A in 
the fundamental equation (113), therefore, can be identified in this case 
with that part of the spatial Laplacian operator in the spherical coor- 
dinates, r, 0, and ~, which depends only on the polar angles, i.e., 

1 ~ sin 0 -~ (136) 
A sin~ 00 sin 2 0 ~?~2 
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Finally, the wave equation for the rigid rotator with free axis becomes 
rather similar to Eq. (132), i.e., 

1 d ~  8~c2E 
+ - - ~  =0  (t37) 

Due to the different structure of the Laplacian operator, however, the wave 
mechanical boundary conditions yielded the eigenvalue equation 

8~ 2 A 
h2 E = n ( n +  1) (138) 

with 

or the energy levels 

E n - 

n =0,1,2,3,. . .  (138a) 

n(n + 1) h 2 

8~2A , n = 0 , 1 , 2 , 3  .... (139) 

Schr6dinger realized immediately that the result, Eq. (139), deviated 
from all results of the old quantum theory. However, he also noticed that 
"various arguments from experiment ... led to putting 'half-integral' values 
for n in formula (134). "(326) Indeed the use of half-integral quantum num- 
bers in the old quantum-theoretical rotator formula provided practically 
the same result as Eq. (139), because the identity 

n ( n +  1)= ( n + 1 ) 2 - ~  (140) 

reduced the discrepancy between the energy values given by Eqs. (134) and 
(139), respectively, to--in general--the small additional term ¼. The prac- 
tical identity of the wave mechanical result for the rotator with free axis, 
and the result derived from the old quantization rules with half-integral 
quantum numbers, could even be shown to be valid in the case of the 
short-wave bands as well, where electronic jumps resulted in different 
moments of inertia for the initial and final state of the molecule. For that 
purpose, Schr6dinger discussed, in the last part of his second com- 
munication, a more realistic model of a diatomic molecule. {327) 

13.3. The Transcription of Epstein's Calculation of the Stark Effect 

Schr6dinger's interest in applying the methods of undulatory 
mechanics to the problem of the Stark effect was awakened at a very early 
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stage of the whole enterprise. On p. 12 of the notebook "Eigenwertproblem 
des Atoms./"--i.e., in the part that he composed during the first weeks of 
January 1926, perhaps even before returning from the Arosa Christmas 
vacation to Zurich--he included in a Programm, besides the problem 
of the action of a magnetic field on the atom, a second point, entitled 
"E-Feld. ParabeIkoordinaten. v-Spektrum?" ("E-Field. Parabolic Coordinates. 
v-Spectrum?"). 

The key to solving the eigenvalue problem for the hydrogen atom in a 
homogeneous electric field of strength F in the z-direction, which is 
described by the wave equation 

8rc2me I e2 eFz) t) = 0 
+---U-[E + 7- (14t) 

--with me, e and h denoting the mass and charge of the electron and 
Planck's constant, respectively--consists of introducing--as Paul 
S. Epstein (328) had done a long time before--parabolic coordinates into the 
problem. Schr6dinger selected spatial parabolic coordinates defined by the 
equations 

x =  +x /2 ;2 ; . cos  ~, y =  + ~ . s i n ~ b  
and 

z = ½(21 - 22) (142) 

which, for example, Hendrik Kramers had used in his doctoral dissertation. 
Kramers' equation for the action function S of the Stark effect problem, 
i.e.,(329) 

21-1-22 ~ 4~l\(~),lJ 
(?S) 1. 1 \(c3S~ 2] 

- 2e -  e(XT- :<7) F }  = E (143) 

might have offered Schr6dinger an immediate opportunity to establish a 
wave equation on the lines suggested in his first communication. The 
same wave equation, however, followed in a more systematic manner 
from the principles laid down in the second communication, especially by 
transforming the fundamental wave equation, Eq (113), to parabolic 
coordinates. Thus one obtained the equation 

c3 c~2 / 1  1"~ ~2 

Q21 
2nZm 

+ -h7 [E(),,+22)+2e2-½eF(2~-2~)]~=O (144) 
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Evidently, Eq. (144) could be split into three second-order differential 
equations, each involving derivatives with respect to a single parabolic 
coordinate, namely, 

82~ 

and 

O--~ ( ~ ~ ) + ( D~2 + A~ + 2B + ~) A = ( 144b, c) 

where the full wave function is the triple product 

= ~(~b). A 1(2j)" A2(22) (145) 

Further, ~ and A stand for 21 and A1(21) in Eq. (144b), while ~ and A 
stand for 4 2 and A2(22) in Eq. (144c). The coefficients A and C are given by 
the expressions 

27cmeE n 2 

A-- h----y-- and C -  4 (146) 

with n an integral constant (=0,  1, 2, 3,...); the coefficients B and D are 
given by 

l~2me 2 g2me e F  B ~ = ~ ( e - f l )  and D~= h2 (147) 

in the case of Eq. (t44b) for Al()q), and 

7~m e g m e e F  
B ~ = - ~ ( e 2 + f l )  and D2=-~ (148) h 2 g / -  

in the case of Eq. (144c) for A2()~2), with/~ a constant. 
The solution of Eqs. (t44) in the field-free case--i.e., in the absence of 

the Stark term D~2--and for energy smaller than zero (A <0, bound 
states), yielded the well-known Balmer term formula, 

2~ am e e 4 
E= 12h2 (149) 

with the integral "principal quantum number" 1 given by the equation 

l = k  1 +k2 +n  + 1 (150) 
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The quantities kl and k2 have to assume, like n, integral values, i.e., 

n, k l ,k2=O, 1,2,3,... (150a) 

because of the uniqueness conditions imposed on the functions qs, A1, and 
A2. However, in the first-order perturbation approximation, the total 
energy of the hydrogen atom in the electric field became 

2~2me e4 3 hZF/(k2- kl) 
, ( 1 5 I )  

E = 12h 2 8 ~'mee 

Schr6dinger concluded: "It is the well-known formula of Epstein for the 
term values in the Stark effect of the hydrogen spectrum. ''(33°) The integral 
numbers kj and k2 corresponded to the "parabolic quantum numbers," 
which might also assume--like the integer n--the value zero. The analogue 
to the old "equatorial quantum number" in the new scheme was the num- 
ber n +/, and Schr6dinger noticed happily: "The value for the latter is thus 
automatically excluded by wave mechanics, just as by Heisenberg's 
mechanics. ''~331) Indeed, in the old quantum theory, electron orbits passing 
through the nucleus (as connected to the equatorial quantum number zero) 
had to be arbitrarily excluded, while in the quantum mechanics developed 
by Heisenberg the exclusion happened automatically. With the reproduc- 
tion of this result, Schr6dinger's Stark effect calculation could be con- 
sidered as a complete success. In this paper, the third communication on 
"Quantization as an Eigenvalue Problem," Schr6dinger also developed a 
detailed perturbation theory for many degress of freedom--which he 
applied to the theory of the Stark Effect. 

14. R E S P O N S E  T O  W A V E  M E C H A N I C S .  I. T H E  E A R L Y  P H A S E  

After the submission of the first two communications on "Quan- 
tisierung als Eigenwertproblem," the close relations between Munich and 
Zurich continued. Of course, contact with Wilhelm Wien had to be kept up 
automatically, because Schr6dinger went on to write and send further 
papers on wave mechanics to the editor of Annalen der Physik. As a rule, 
he requested that Wien show the manuscripts to Arnold Sommerfeld first. 
But this formal, official business was not all: besides giving certain 
explanations concerning the contents of the papers, Schr6dinger reported 
other important events to Wien, especially the further successes of the new 
theory and its propagation. 

On March 17, 1926, Schr6dinger sent Wien the manuscript of the 
paper containing the demonstration of the equivalence of wave and matrix 
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mechanics; two days afterwards he commented on the results of the paper, 
upon which Wien replied promptly: "Your last essay I have sent 
immediately to the printing office, since Sommerfeld [to whom 
Schr6dinger had requested that Wien show the paper beforehand] is still in 
England. ''(332) Wien wrote further: "It is highly astonishing and delightful 
to observe how fast the steps proceed; your new result, which establishes 
the mathematical bridge to the matrix theory, certainly does not leave any 
doubt about the fact that you have chosen the right path. ''(~31) Schr6dinger, 
for his part, felt "extremely happy that men like you and Geheimrat Planck 
share the good hopes for the path I have chosen," because this positive 
attitude did not prevail in general. (333) He remarked: "It seems at present 
that the conviction does not exist everywhere that one should welcome 
without reservation a renunciation of the fundamental discontinuities, /f 
one can do SO, "(333) He further added that he had "always ardently hoped 
that this would be possible" and that he "would have seized it with both 
hands"--as much as in the case of the Bohr-Kramer-Slater theory--"even 
if chance had not played the first (in view of de Broglie I should more 
correctly say second) tip directly into my own hands. ''(333) He again 
thanked Wien most heartily, in particular for his "strong advocacy in 
favor of the classical theory," and added the remark: "It would be nice if 
one were allowed again to think in a clear and simple way instead of in 
terms of verdicts and commandments, rules and correspondence-like 
analogies--which certainly constituted an unavoidable and highly 
appreciable intermediate situation. ''(333) 

Sommerfeld, although he did not share Wien's antipathy towards the 
erstwhile [i.e., matrix mechanical] status of quantum theory, nevertheless 
followed Schr6dinger's work with extreme interest. He spread the news 
about wave mechanics not only by letters, but also in his public talks and 
lectures such as those he delivered in England in March 1926. (334) 

The exchange of scientific ideas on problems of statistical mechanics 
with Max Planck and Albert Einstein had contributed crucially in 1925 to 
Schr6dinger's getting on to the path to wave mechanics. After he had sub- 
mitted the paper on "Die Energiestufen des idealen einatornigen Gasmodells" 
("The Energy Levels of the Ideal Monatomic Gas Model") at the beginn- 
ing of December 1925, (213) the connection with Berlin was interrupted for a 
while, hence the people there heard about the establishment of the new 
atomic theory later than their colleagues in Munich. Still, they learned 
about wave mechanics earlier than other scientific circles, and they did so 
through personal reports by Schr6dinger. As a result, they had the oppor- 
tunity of responding to his ideas very early. 

Writing to Planck, Schr6dinger reported briefly "about a thing which 
has captured me completely for two months and which--I am already 
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totally convinced about - -possesses  a quite extraordinary significance. ''~335) 
He then formulated the "thing" in the case of conservative systems of 
classical mechanics, s ince--as  he wro te - - the  generalization to relativistic 
atomic systems and to systems in a magnetic field did not  yet work. 
Schr6dinger summarized the problems which he had solved so far: namely, 
the nonrelativistic hydrogen atom, the rigid rotator,  the one-dimensional  
oscillator, the rotat ing and oscillating diatomic molecule, and the Stark 
effect of first order of  the hydrogen lines. Since the results of the 
calculations seemed to be very encouraging,  he continued optimistically: 

I do have the very boldest hopes that one would now succeed in constructing a 
harmonious quantum theory, free of all roughness, not in the sense that 
everything becomes continuously more discontinuous and represented more by 
integral numbers, but rather in the opposite sense: the beautiful classicaI 
methods [of second-order differential equations with boundary conditions] 
provide automatically all the integralness that is necessary; this is no mysticism 
of integral numbers (keine Mystik in den ganzen Zahlen) but just the same 
integral numbers, which we are used to since long as occurring in surface 
harmonics, Hermitian and Laguerre polynomials (the former for the oscillator, 
the latter for the hydrogen electron)J 335) 

After this enthusiastic report ,  Schr6dinger added a word of  caution:  "I 
do  not,  of  course, mean that  now one can again explain everything by 
ordinary mechanics, that  the ~-vibrat ions are mass vibrations in the sense 
of the usual mechanics. On  the contrary:  they or  something similar seems 
to be at the basis of  all mechanics and electrodynamics. ''(335) He concluded 
this highly informative letter with the words:  "Please forgive me, highly 
revered Herr Geheirnrat, the unsatisfactory aspect of  this short  presen- 
tation; I cannot  report  the things with much more  clarity in a few 
pages. ''(335) Within a month ,  however, Schr6dinger had available reprints 
of proof-sheets of  his first two communica t ions  on "Quantisierung als 
Eigenwertproblem"(244'256~; he immediately dispatched copies to Max 
Planek in Berlin. This started an exchange of  several letters on wave 
mechanics between Planck and Schr6dinger during the period between 
April and June 1926. 

Planck acknowledged the receipt of  Schr6dinger 's  paper  in a postcard:  

Many thanks for the reprint. I read your article the way an inquisitive child 
listens in suspense to the solution of a puzzle that he has been bothered about 
for a long time, and I am delighted with the beauties that are evident to the eye, 
but I have to study it much more closely and in detail to be able to grasp it 
completely. Besides, I find it extremely congenial that such a prominent role is 
played by the action function W. I have always been convinced that its 
significance in physics was still far from exhaus t edJ  33~;~ 

Planck's  extremely positive reception of  wave mechanics also affected 
Albert Einstein, who wrote a letter to Schr6dinger two weeks later. He 
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started by saying: "Professor Planck pointed your theory out to me with 
well-justified enthusiasm and I studied it too, with the greatest interest. ''(337) 
Schr6dinger immediately wrote to Einstein: "My sincere thanks for your 
extremely kind letter of the 16th. Your approval and Planck's mean more 
to me than that of half the world. Besides, the whole thing would certainly 
not have originated yet, and perhaps never would have (I mean, not from 
me), if I had not had the importance of de Broglie's ideas really brought 
home to me by your second paper on gas degeneracy. ''(338'339~ 

Einstein acknowledged Schr6dinger's answer quickly. He wrote back: 
"I am convinced that you have made a decisive advance with your for- 
mulation of the quantum condition, just as I am equally convinced that the 
Heisenberg-Born route is off the track. ''(34°) Two days after Einstein wrote 
the letter, Werner Heisenberg presented the G6ttingen quantum mechanics 
at the Berlin Kolloquium, providing Einstein more detailed information 
about this theory. He faced a critical Einstein, who had already concerned 
himself with what he called the "Heisenberg-Born scheme" for some 
time. (341) 

Schr6dinger kept Einstein, Planck, and Hendrik Lorentz informed 
about the latest progress of wave mechanics by sending them reprints--or 
proof-sheets--of his papers. Lorentz, in particular, responded to 
Schr6dinger on many points of detail. (342~ Planck, on the other hand, 
expressed his pleasure that "we may soon have the opportunity to hear you 
and talk to you here. ''(343) Schr6dinger had already been invited to Berlin 
sometime earlier to present a talk at a meeting of the German Physical 
Society. Planck had discussed with Eduard Griineisen, then President of 
the Berlin Section, and now mentioned in his letter, the possibility of 
having Schr6dinger's visit during the summer semester, i.e., before the end 
of July. Hence he wrote enthusiastically: "Let me tell you explicitly how 
much pleasure all of the physicists here would have in having you yourself 
present your new theory and coming into contact with your ideas. ''(343) 
After a further exhange of letters between Schr6dinger and Planck, it was 
agreed that Schr6dinger would give a talk at the Berlin Physical Society on 
July 16. This talk was expected to be on the level of "students in the upper 
classes who, therefore, have already had mechanics and geometrical optics, 
but who have not yet advanced into the higher realms; to whom, therefore, 
the Hamilton-Jacobi differential equation signifies ... not by any means 
something to be taken for granted"; hence Schr6dinger should give "a 
general survey of the fundamentals for the purpose of orientation without 
much calculation and without many individual problems. "(344) Planck went 
on to say: "Perhaps it would be easier and more natural for you to carry 
this out, if on the other day, Saturday morning the 17th of July, you were 
to give a second lecture in our Colloquium, aimed at more special matters 
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with supplements and continuations of the lines of thought you will have 
described at the more general meeting. "~344) 

Planck also invited Schr6dinger to stay at his house during the Berlin 
visit, as "my wife and I would be especially happy if you would stay with 
us," promising him to "have the opportunity to withdraw and occupy 
yourself as you s e e  fit .  ' '(344) Schr6dinger accepted the dates of the lectures 
as well as the invitation to Planck's home "with the utmost pleasure." He 
wrote back: "The words with which you offer me your house as a 'place of 
refuge from Berlin' express a boundless, thoughtful, concerned kindness 
that has truly touched me. ''(345) He hoped to be able, despite his end-of- 
semester fatigue, to "give as much as I possibly can, both in and outside 
the 'official' hours, to the gentlemen in Berlin who are so friendly as to be 
interested in my work"; he would like, "from a purely selfish standpoint ... 
to make full and intensive use of the opportunity to discuss the things that 
have held me completely captured for months, with a number of the most 
distinguished scientists with the widest variety of research interests. ''{345} 
Schr6dinger finally announced--after mentioning in his letter some recent 
results on an application of wave mechanics to dispersion theory--that he 
would like to arrive in Berlin on the evening of July 15, 1926. 

In a letter dated June t5, Planck confirmed the arrangements of 
the lectures to the Physical Society (on July 16, 1926) and to the Berlin 
Kolloquium (on July t7, t926). He wrote further: "On the evening of the 
17th I hope to have several colleagues and you at our home," indicating 
that he planned to have a party at his house, where Schr6dinger might 
meet and discuss more privately with some of the eminent Berlin physicists. 
As Planck had expected, Schr6dinger's visit--including his talk on 
"Grundlagen einer auf Wellenlehre begriindeten Atomistik" ("Foundation of 
an Atomic Theory based on the Wave Approach") before the Physical 
Society and the Colloquium lecture--was very successful. The acquaintance 
with Berlin and the physics community there would contribute to the 
invitation to Schr6dinger, within less than a year, to take up the chair of 
theoretical physics at the University of Berlin as the successor of Max 
Planck. 

15. FORMAL EQUIVALENCE OF WAVE MECHANICS A N D  
THE Q U A N T U M  MECHANICS OF BORN,  HEISENBERG, 
J O R D A N ,  A N D  DIRAC 

On seeing the manuscript of Schr6dinger's first communication on 
Quantisierung als Eigenwertproblem, Arnold Sommerfeld wrote to 
Schr6dinger: "My first impression is this. Your method is a substitute for 

825/18/2-2 
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the new quantum mechanics of Heisenberg, Born, and Dirac (Proc. R. Soc. 
London, 1925), in particular a simplified one--so-to-say,  an analytical 
resolvent of the algebraic problem posed there [i.e., in quantum 
mechanics]. "~275) Sommerfeld was deeply impressed by the new, so com- 
pletely different atomic theory, and he immediately thought of connecting 
it to the quantum mechanical scheme developed earlier. Obviously, he 
mentioned this to his experimental colleague Wilhelm Wien, who soon 
emphasized the same point in his own letter to Schr6dinger. Wien reported: 
"Sommerfeld thinks that your theory agrees with that of Heisenberg and 
Born. Since I do not know the latter, I cannot judge it.  ' '(274) 

In a letter, dated March 4, 1926, Schr6dinger asked Wien to include 
some corrections to his second communication on Quantisierung ats 
Eigenwertproblem, but did not report any news on the problem of relating 
the two theories. However, two weeks later a radical change occurred: on 
March 18 Wien received a completely finished and polished article from 
Schr6dinger, entitled "Uber das Verhiiltnis der Heisenberg-Born- 
Jordansehen Quantenmeehanik zu der meinen" ("On the Relation between 
the Heisenberg-Born-Jordan Quantum Mechanics and My Own"), which 
was intended to be published in the Annaten der Physik. Schr6dinger wrote 
to Wien: 

The hope which I expressed in point 4 of my letter of February 22 has been 
fulfilled much earlier than I thought. The relationship [of my theory] to Heisen- 
berg's has now been completely clarified, and this in the sense that anyone who 
does not want also must not calculate with matrices, since both representations 
are--from the purely mathematical point of view--totally equivalent. From 
the physical point of view, though, my representation seems to me to be 
considerably more satisfactory and expandable (ausbaufglhiger), because one is 
guided by intuition. Also, the fact that I succeeded from the point of view of 
undulatory mechanics in revealing the relation [to Heisenberg's theory], while 
Weyl--with whose mathematical knowledge and ability I cannot [even] 
remotely compare~id not manage it from the matrix point of view, speaks 
a posteriori in favor of the superiority of my theory and of the much better 
prospect it also provides as far as the mathematical methods are concernedJ 3~ 

Wien reacted to Schr6dinger's announcement with enthusiasm, and wrote 
back: "Your new result, which at least provides the mathematical  bridge to 
the matrix theory, certainly no longer leaves any doubt that you are 
proceeding on the right path. ''(349) 

Schr6dinger outlined his view on the problem of establishing a 
relationship with what he abbreviated as "Heisenberg's quantum 
mechanics" (meaning the matrix theory of Born, Heisenberg, and Jordan)  
in the introduction of the new paper as follows: 

Considering the extraordinary differences between the starting points and the 
concepts of Heisenberg's quantum mechanics and of the theory which has been 
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designated "undulatory" or "physical" mechanics, and has lately been described 
here, (244~256) it is very strange that these two new theories agree with one another 
with regard to the known facts even where they differ from the old quantum 
theory.... That is really very remarkable, because starting points, presentations, 
methods, and in fact the whole mathematical apparatus, seem fundamentally 
different. Above all, however, the departure from classical mechanics in the two 
theories seems to occur in diametrically opposite directions. In Heisenberg's 
work the classical continuous variables are replaced by systems of discrete 
numerical quantities (matrices) which depend on a pair of integral indices, and 
are defined by algebraic equations. The authors themselves [i.e., Born, Heisen- 
berg, and Jordan (1926, p. 79)] (348) describe the theory as a "true theory of a 
discontinuum." On the other hand, wave mechanics shows just the reverse ten- 
dency; it is a step from the classical point-mechanics towards a continuum 
theory, (349} 

Indeed, one could hardly imagine a bigger antagonism than that 
existing between the undulatory mechanics, in which a "continuous field- 
like process in configuration space ... governed by a single partial differen- 
tial equation" replaces the finite number of differential equations plus the 
quantum conditions describing a system of finitely many variables in the 
"classical quantum theory," on the one hand, and, on the other hand, the 
G6ttingen approach which "connects the solution of a problem in quantum 
mechanics with the solution of a system of an infinite number of algebraic 
equations, in which the unknowns--infinite matrices--are allied to the 
classical position- and momentum-coordinates of the mechanical system, 
and functions of these, and obey peculiar calculating rules. ''13s°) 

In order to establish a relation between the two schemes, Schr6dinger 
planned to proceed in two steps. First, he showed how 

to each function of the position- and momentum-coordinates there may be 
related a matrix in such a manner, that these matrices, in every case, satisfy the 
formal calculating rule of Born and Heisenberg. [He emphasized:] This relation 
of matrices to functions is general; it takes no account of the special mechanical 
system considered, but is the same for all mechanical systems.... However, the 
relation is still indefinite to a great extent. It arises, namely, from the auxiliary 
introduction of an arbitrary complete orthogonal system of functions having for 
domain entire configuration spaee [i.e., the full q-space]. 13~1) 

As a second step, Schr6dinger showed: 

The special system of algebraic equations, which, in a special case, connects the 
matrices of the position and momentum coordinates with the matrix Hamilton 
function, and which the authors [i.e., Born, Heisenberg, and Jordan] call 
"equations of motion," will be completely solved by assigning the auxiliary role 
to a definite orthogonal system, namely, to the system of eigenfunctions of that 
partial differential equation which forms the basis of my wave mechanics. The 
solution of the natural boundary-value problem of this differential equation is 
completely equivalent to the solution of Heisenberg's algebraic problem. ~352) 
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The ent ire  d e m o n s t r a t i o n  thus resulted,  as Schr6dinger  po in ted  out,  in 
the conclus ion:  

From the formal mathematical standpoint, one might well speak of the identity 
of the two theories.... [Especially, ] all Heisenberg's matrix elements, which may 
interest us from the surmise that they define "transition probabilities" or "line 
intensities," can be actually evaluated by differentiation and quadrature, as soon 
as the boundary-value problem is solved. [Wave mechanics even had, so 
Schr6dinger claimed, the advantage of providing] these matrix elements, or 
quantities that are closely related to them.., the perfectly clear significance of 
amplitudes of the partial oscillations of the atom's electric moment, [thus 
making] the intensity and polarization of the emitted light intelligible on the 
basis o f  the Maxwell-Lorentz  theory. (353) 

15.1. Operators and Equivalence of Wave and Matrix Equations 

Schr6dinger  showed,  as a first step, tha t  the B o r n - H e i s e n b e r g - J o r d a n  
scheme could  be represented  by an o p e r a t o r  calculus;  as a second step, he 
then p roved  the one- to -one  re la t ion between these o p e r a t o r  me thods  and  

the wave mechan ica l  equa t ions  and  opera t ions .  
In  his paper ,  Schr6dinger  wrote:  

The crucial point in the construction of matrices is given by the simple obser- 
vation that Heisenberg's peculiar calculating laws for functions of the double set 
of n quantities, q l, q2 ..... q~; P l,P2,...,P, (position- and canonically conjugate 
momentum-coordinates) agree exactly with the rules, which ordinary analysis 
makes linear differential operators obey in the domain of the single set of n 
variables, ql, q~,..., qn. So the coordination has to occur in such a manner that 
each p~ in the function is replaced by the operator 8/8ql. Actually the operator 
8/8qi is exchangeable with 8/dqm, where m is arbitrary, but with q,, only, if 
m ¢ 1. The operator, obtained by interchange and subtraction when m = 1, viz. 

8 
~ q q ~ - q l c - ~ q  1 [(152)] 

when applied to any arbitrary function of the q's, reproduces the function, i.e., 
this operator gives identity. This simple fact will be reflected in the domain of 
matrices as Heisenberg's commutation rule/354~ 

The above -men t ioned  s tar t ing po in t  of Schr6dinger ' s  demons t r a t i on  
reminds  one of the co r r e spond ing  s ta r t ing  po in t  of M a x  Born ' s  t rans-  
l a t i o n - i n  July  1925---of Heisenberg ' s  new quan t i za t ion  rule in to  the 
mat r ix  language.  At  tha t  t ime the rep lacement  of  Heisenberg 's  
equation,(355) 

h = 27zm [Iq(n + z, n)l 2 co(n + ~, n )  - Iq(n,  n - "r)[ 2 co(n, n - ~)] (153) 
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by the equation (of Born) 

h 
[p(n, k)  q(k, n ) - q ( n ,  k ) p(k,  n)] = 2~z-~ 

k 

had led to the matrix relation 

(154) 

h 
Pq-qP=-2-~i~i 1 (155) 

and thus to the whole matrix scheme of quantum mechanics. Schr6dinger 
now observed that the replacement of the momentum variable p by essen- 
tially the operator 

c~ h 
p = X , x = (156) 

a procedure that he had already followed in the first attempt to derive the 
hydrogen wave equation, (356) led to an automatic satisfaction of the 
Born-Heisenberg-Jordan quantum condition. 

This important observation provided a strong stimulus to try an 
attempt at "a systematic construction" of a simple operator formalism that 
would replace the matrix scheme of the G6ttingen physicists. In presenting 
this attempt, Schr6dinger followed to some extent the detailed steps which 
had been taken earlier by Born and Jordan when building up matrix 
mechanics. 

The first point which he noticed was the following: in constructing the 
operator corresponding to a function of the position and momentum 
variables, q~ and Pk, one must take the commutation rule (155) and, 
therefore, prescribe a "function-symbol written in a definite way," which 
he called a "well-arranged" or "well-ordered function symbol. ''(357) For 
example, Schr6dinger associated with a function of the type, 

F ( q k , P g ) = f ( q l  ..... q, ,)PrP,P,g(ql ..... q,~)P/h(ql,..., qn)P,"P,' . . . .  (157) 

the well-ordered function-symbol 

6 3 
IF , .  ] = f ( q l  ,..., q,,) K~ c~q,.c~q,~qz g(ql ..... q,,) 

• h(ql,. . . ,  qn) K;  C3qr,,C3qs,''" (158) 

The operator [F , . ]  may be applied to any function u of the position 
variables alone, and the same can be done with a product operator 
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[GF,. ]--------which is defined such that first F is applied to u, and then G to 
the resulting function. Because of the commutation rule, Schradinger 
observed in general that 

[GF,. ] ¢ [FG,. ] (159) 

With the "well-ordered function-symbol" following the same relations 
as the corresponding matrix symbol, Schr6dinger proceeded to establish 
detailed operator expressions for the important matrix expressions of quan- 
tum mechanics. For that purpose he assumed that his operators acted on a 
complete orthogonal function system defined in the entire x-space (where x 
denotes the n coordinates ql ..... qn), 

b/l(X) ~ ,  U2(X ) %, ~ / ~ ,  U3(X ) \ / p ( x )  .... (160) 

with each function ui(x) vanishing fast enough at infinite x. He then 
associated with the operator (157) the matrix coefficients F kt by the 
relation 

f p(x) uk(x)[F, u/(x)] dx (161) FkJ= 

which he verbally expressed as: "A matrix element is computed by multi- 
plying the function of the orthogonal system [(160)~ denoted by the 
row-index (whereby we always understand ui, not ui x/P) by the "density 
function" p, and by the result arising from using our operator on the 
orthogonal function corresponding to the column-index, and then by 
integrating the whole over the domain. ''(358) Schr6dinger now went ahead 
and demonstrated explicitly how his "matrices" F kl indeed obeyed the 
matrix relations of Born, Heisenberg, and Jordan. 

First of all, the definition contained in Eq. (161) obeyed the rule of 
matrix multiplication, i.e., 

(FG) km --- ~ Fk'G 'm (t62) 
l 

Similarly, Schr6dinger established the matrix mechanical rules for he 
(partial) differentiation of a (matrix) variable with respect to the position 
or momentum variable, namely, 

or 

1 
~?q~ . = ~ [ p ~ F -  Fpl, . ] (162a) 

Op~ " = ~ 2 [ F q l - q l F '  .] (162b) 
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The crucial point in the entire demonstration of equivalence between 
the matrix and the wave mechanics now had to do with the solution of the 
equations of motion. In matrix from the latter read 

and 

dt J = \-~p~p~J (163a) 

- - ~ J  - \ ~ q l J  (163b) 

with a suitably symmetrized Hamiltonian diagonal matrix (Hik). Since the 
time derivative of the matrix element q,k reproduced the matrix element 
multiplied by the factor 2 z i ( v i -  vk), Eqs. (163) assumed the form 

1 
( v ~ -  vk) q~k =.£ (Hql  - q ~ H )  (164a) 

and 

1 
(v , -  = (Hp  H) (164b) 

SchrSdinger made two essential claims: 

1. The Eqs. [(164)] will in general be satisfied if we choose as the orthogonal 
system the eigenfunctions of the natural boundary value problem of the 
following partial differential equation: 

- -  [ t I ,  O] + EO = 0 [(165)] 

tp is the unknown function of ql, q2 ..... q~; E is the eigenvalue parameter .... 
The quantities v~ are found to be equal to the eigenvalues E i divided by h. 
(H ~) becomes a diagonal matrix, with H k~ = Ek. 

2. If the symmetricalizing of the function H has been effected in a suitable 
way--the process of symmetricalizing, in my opinion, has not hitherto 
been defined uniquely--then [Eq. (165)] is identical with the wave equation 
whwh is the basis of my wave mechaniesJ 359) 

The use of the eigenfunctions of the differential equation (165) as the 
complete system ui(x) for the operator formalism obviously ted to the 
following matrix elements H k¢, 

{O t forf°r ll=~ k,k (166) H kl = E 1 ~ p ( x )  uk(x)  u l ( x )  dx  = 
d 
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If inserted into the right-hand side of Eq. (164a), one obtains 
( (Ei -Ek) /h)  q]k; consequently, the transition frequency indeed assumes the 
value (E~-E~)/h, as has been asserted by Claim 1. 

In order to prove the remaining, most important, Claim2, 
Schr6dinger recalled the derivation of his wave equation from the classical 
problem described by the Hamiltonian H, 

H = 3(qk, Pk) + V(qk) (t67) 

where the kinetic energy ,3 is supposed to be a quadratic form of the 
momentum variables Pk and the potential V depends only on the position 
variables qk. In his first communication, he had proceeded by calling upon 
the variational principle 

supplemented by the subsidiary condition 

(168) 

J 2 =  f @2Z~pt/2 d y  = 1 (168a) 

(Ap denoted the discriminant of the quadratic form ,3.) When he carried 
out the variation in the following way, 

0 = ½(3J~ - Er~J2) = ~ J 8~2~c~_ / p e qe \ aPe/ 

+ ( V - E )  Ap~/2O] 60 dx (169) 

the Eulerian equation 

h 2 A1/2,~__~.~ (. ~ 1/2 ~,~.,~ 
8=--5 P g ~?qk \ p apkJ -- Vq) + E 0 = 0 (170) 

followed immediately. By referring to the relation 

1 ~?3(qk, Pk) 
3 ( q k ' P k ) = s Z P k  Opk 

- k 
(171) 

which is valid for quadratic form in the Pk, and by observing the 
relation (156), this equation transformed into Eq.(t65). Schr6dinger 
concluded triumphantly: "Hence the solution of the whole system of matrix 
equations of Heisenberg, Born, and Jordan is reduced to the natural 
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boundary-value problem of a linear partial differential equation. If we have 
solved the boundary value problem, then by the use of Eq. [(161 )] we can 
calculate by differentiations and quadratures every matrix element we are 
interested in. ''(36°) 

Although he had confined himself to a nonrelativistic problem in 
atomic physics in which no external magnetic field occurred, he scarcely 
doubted "that the complete parallel between the two new quantum theories 
will stand when this generalization is obtained. ''(36~ 

Schr6dinger wrote to Sommerfeld on April 18, 1926: "With Pauli I 
have exchanged a couple of letters. He really is a phenomenal person. How 
he has discovered everything again? In a tenth of the time which I needed 
for it!" He evidently referred with these words to the recent news that he 
had received from Wolfgang Pauli, especially to what the latter called a 
"complete clarification of the connection of Schr6dinger's theory and 
quantum mechanics" ("die Verbindung yon SchrOdinger rnit der Quanten- 
mechanik vollstlindig klargestellt'). (~62) Pauli obtained this clarification 
during a visit in the spring of 1926 to Copenhagen, where he had gone to 
discuss the burning problems of atomic physics in those days. On April 12, 
1926, Pauli formulated the result of his considerations in a detailed letter 
addressed to Pascual Jordan in G6ttingen. He wrote: "Today I want to 
write neither about my Handbuch article nor about multiple quanta. I will 
rather tell you the results of some considerations of mine connected with 
Schr6dinger's paper "Quantisierung als Eigenwertproblem," which just 
appeared in the Annalen der Physik. I feel that this paper is to be counted 
among the most important recent publications. Please read it carefully and 
with devotion. ''(363/ He further wrote to Jordan: "I think I now have 
completely clarified [the connection between the Born Heisenberg-Jordan 
theory and the Schr6dinger theory]. I have found that the energy values 
resulting from Schr6dinger's approach are always the same as those of the 
G6ttingen mechanics, and that from Schr6dinger's functions ~, which 
describe the eigenvibrations, one can in a quite simple and general way 
construct matrices satisfying the equations of the G6ttingen mechanics. 
Thus at the same time a rather deep connection between the G6ttingen 
mechanics and the Einstein-de Broglie radiation field is established. ''I363) 

In his letter to Jordan, Pauli went to establish the full mathematical 
equivalence between the Born-Heisenberg-Jordan quantum mechanics and 
Schr6dinger's wave mechanics. He concluded: "The problem of the 
asymptotic linkage [of the new theory] with the usual pictures in space 
and time for the limiting case of large quantum numbers remains unsolved. 
Yet it is a definite progress to be able to see the problems [of atomic 
theory] from two different sides [i.e., from matrix mechanics and wave 
mechanics]. It seems that one also sees now, how from the point of view of 
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quantum mechanics the contradistinction between "point' and 'set of waves' 
fades away in favor of something more general. ''(363) 

At the end of May 1926, Carl Eckart from Pasadena, California, con- 
tributed a paper to the Proceedings of the National Academy of Sciences, in 
which he tried "to show, in a purely formal way, that the Schr6dinger 
equation must be the basis" for the Born, Jordan, and Heisenberg matrix 
calculus. ''(364) On June 7, 1926, Eckart completed a second paper and sub- 
mitted it to Physical Reviews, where it was published in the issue of 
October 1926. (365) In it Eckart wrote: "The more recent advances in quan- 
tum dynamics made by Heisenberg, Born and Jordan, Dirac, and most 
recently, by Schr6dinger, have led to various mathematical formulations of 
the various physical hypotheses involved. In the present paper it is 
proposed to give a unified mathematical treatment, which, though it can- 
not pretend to be the final form of the theory, leads to methods of solution 
of the equations of Born and Jordan, and Dirac, which are much simpler 
than those previously developed....The final achievement wilt be the 
inclusion of the results of Schr6dinger in a single calculus with those of the 
other authors mentioned above. This would seem to be the strongest sup- 
port which either of the two dissimilar theories have thus far received. ''(366) 
The essential point consisted, as Eckart argued, in the task of establishing a 
general method of calculating matrix elements (i.e., the matrix elements of 
the Born-Jordan theory) and of relating Schr6dinger's method directly to 
the other quantum mechanical methods. For this purpose, Eckart 
developed a formal calculus which "includes the Born and Jordan matrix 
dynamics, and also the remarkable quantum condition of Schr6dinger. ''(366) 
As an appropriate formal calculus to accomplish all that, he made use of 
the operator calculus, i.e., a slight generalization of methods that were 
available in the mathematical literature for some time, and furnished the 
proof of the formal equivalence of the theories of quantum mechanics and 
wave mechanics. 

16. RESPONSE TO WAVE MECHANICS II. 
APPLICATIONS AND EXTENSIONS 

Several eminent physicists--including Wien, Sommerfeld, Planck, 
Einstein, and Lorentz--reacted very quickly to the proposal of an 
undulatory theory of atoms, sometimes even before the publication of 
Schr6dinger's first communication on the subject. However, these, in 
general very positive, responses from Munich, Berlin, or Leyden did not 
immediately result in active work by others. One noticed and applauded 
the concepts and results of wave mechanics; one criticized this or that 
assumption in it; still, neither Sommerfeld, Einstein, nor Planck personally 
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sat down to try out a new example not previously considered by 
Schr6dinger, or suggested a further application or extension of the scheme. 
But all three spread the message of undulatory mechanics among their 
colleagues. 

Schr6dinger's publications on wave mechanics in Annalen der Physik 
stimulated considerable interest among the quantum physicists in 
Germany, Central Europe, and Scandinavia. For example, in Vienna, 
Ludwig Flamm, a former colleague and friend of Schr6dinger, wrote a 
review of the principles of that theory for the Physikalische Zeitschrift, 
propably constituting the first review of the subject. (367~ Erwin Fues, 
Gregor Wentzel, Ivar Waller, Max Born, Werner Heisenberg, and Paul 
Dirac, all at different universities in Europe, wrote substantial papers in 
which they applied undulatory mechanics to new problems and extended 
its scope. The Belgian Charles Manneback, then in Zurich, Fritz Reiche in 
Breslau, Walter Gordon in Berlin, and again Gregor Wentzel in Leipzig, 
the Russian Waldemar Alexandrow, then in Zurich, and the Dane Oyvind 
Burrau in Copenhagen, all made further applications of wave mechanics to 
atomic problems; foreign visitors and students in Germany, such as the 
American J. Robert Oppenheimer in G6ttingen, also contributed their 
share to the application and extension of wave mechanics. 

In America, the California Institute of Technology became a center for 
the early use of wave mechanics; there, Carl Eckart and Paul Sophus 
Epstein dealt with atomic problems in the framework of the undulatory 
theory. Several months later the physicists on the East Coast joined the 
bandwagon, when Ralph Kronig and Isidor Rabi worked out the sym- 
metrical top in Schr6dinger's scheme. 

Remarkably little happened in France, the homeland of matter waves. 
The best-known contribution came from the Belgian physicists Th60phile 
De Donder and Frans Henri van den Dungen from Brussels; in two notes, 
submitted to the Paris Academy of Sciences, they suggested a relativistic 
extension of Schr6dinger's wave equation (which Schr6dinger also 
proposed), arriving at similar results as several other colleagues--in 
Germany (Walter Gordon), Sweden (OskarKlein), Russia (Vladimir 
Fock), and Hungary (Janos Kudar)--at  that time. Louis de Broglie, the 
inventor of the conception of matter waves, did of course take notice of 
Schr6dinger's work; in a note, also submitted to the Paris Academy of 
Sciences, he declared it as having "confirmed our ideas on the wave nature 
of mechanics" ("confirmd nos id(es sur la nature ondulatoire de Ia 
mdcanique"). (36s) Basically, he did not pick up on the new theory, because 
his own ideas deviated strongly from Schr6dinger's; in particular, de 
Broglie stressed the particle aspect as representing the real nature of 
microscopic objects, rather than the undulatory aspect. 
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England was another country in which not much happened in 
Schr6dinger's theory in t926--apart from Paul Dirac's important work 
communicated in August of that year to the Proceedings of the Royal 
Society of London. ~369) However, in early 1927 the situation changed com- 
pletely when Charles Galton Darwin in Edinburgh became interested in a 
relativistic extension of the wave equation for atoms including electron 
spin. (3v°) British interest increased tremendously soon after the experimen- 
tal verification of the existence of matter waves in the spring of 1927, in 
which George Paget Thomson and Alexander Reid from Aberdeen took an 
essential part. 

16.1. Band Spectra in Undulatory Mechanics 

On April 27, 1926, the Annalen der Physik received a paper on "Das 
Eigenschwingungsspektrum zweiatorniger Molekiile in der Undulations- 
mechanik" ("The Eigenvalue Spectrum of Diatomic Molecules in 
Undulatory Mechanics"), the author being Erwin Fues from Zurich. This 
paper constituted the first contribution to wave mechanics that did not 
come from Schr6dinger himself. 

The study of band spectra had always provided an excellent testing 
ground for new ideas in atomic theory. With the Bohr-Sommerfeld 
approach to atomic structure, Karl Schwarzschild, (37z) Torsten 
Heurlinger, (373) Wilhelm Lenz, (374) and Adolf Kratzer (375~ had developed an 
understanding of the line patterns in molecular spectra. In July 1925, 
Werner Heisenberg had treated various properties of band spectra from the 
point of view of the just-proposed new quantum mechanics. In 
February 1926, then, Schr6dinger had laid, in Section 3 of his second com- 
munication, the foundation of the theory of band spectra in wave 
mechanics by discussing the "rigid rotator with free axis" (Section 3.2) and 
the "nonrigid rotator" (Section3.3). The latter could be used, as 
Schr6dinger remarked, to calculate the energy states of diatomic molecules. 
He had finally arrived at the formula 

n(n+l)h  2( e \ 2l+1 
E= Ei 4 -8-~2- ~ 1 l ~_ 3£) + - - - ~  hvo ~ / 1 -  3~ (172) 

with n and l corresponding to the rotational and oscillational quantum 
numbers in the old quantum theory, respectively, 

n=0,1,2,3,..., t=0 ,  1, 2, 3,.. (172a) 
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and e representing the small quantity 

n(n + t ) h 2 
e -  16rt4vZA 2 (t72b) 

where A denoted the moment  of inertia of the molecule, 
Equation (172) described the situation roughly. But Schr6dinger also 

realized: 

The e-corrections in [Eq. (172)] do not yet take account of the deviations of the 
nuclear vibrations from the pure harmonic type. Thus a comparison with 
Kratzer's formula and with experience is impossible. (377) I only desired to 
mention the case provisionally .... The rotation-vibration problem of the 
diatomic molecule will have to be reattacked presently, the nonharmonic terms 
in the energy of the binding being taken into account. The method selected 
skillfully by Kratzer for the classical mechanical treatment is also suitable for 
undulatory mechanics. If, however, we are going to push the calculation as far 
as is necessary for the fineness of band structure, then we must make use of the 
theory of perturbation of eigenvalues and eigenfunctions/378) 

At the time when he made this statement, namely in late February 1926, 
Schr6dinger already possessed the perturbation theory mentioned earlier, 
although he would publish the details of the scheme only later, in his third 
communication, together with an application to the Stark effect of 
hydrogen Balmer lines. (379~ 

Instead of carrying out the necessary refined calculation of the 
molecular eigenvalues himself, Schr6dinger left the problem as an exercise 
to Erwin Fues, his assistant in Zurich. The latter indeed succeeded in 
performing the rather tricky evaluation skillfully, translating Kratzer 's  old 
approach into the undulatory mechanics. 

Fues' work on the diatomic molecule clearly showed that he was able 
to master fully the methods of undulatory mechanics at this early stage, 
such that the could apply them to a very complicated case. His solution 
compared favorably with a result which Lucy Mensing in G6ttingen had 
calculated a month earlier on the basis of matrix mechanicsJ 38°~ 

16.2. Intensity Calculations of Schriidinger, Pauli, WentzeL and Fues 

The first intensity calculation for atomic lines in the new quantum 
mechanics was performed by Werner Heisenberg in his pioneering paper  of 
July 1925: he succeeded in obtaining the transition amplitudes in the cases 
of the anharmonic oscillator and the (rigid) ro ta to r - - the  latter satisfying 
the semiempirical intensity rules for multiplet spectra and anomalous 
Zeeman effects. (381) Max Born and Pascual Jordan had then proved 
Heisenberg's fundamental assumption "that the squares of the absolute 
values of the elements in a matrix representing the electrical moment  of an 
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atom provide a measure of the transition probabilities. ''(382) Again, within 
the matrix scheme, Lucy Mensing in her paper, which she submitted in 
March 1926 to Zeitschrift ffir Physik, found the expressions for the inten- 
sities of lines contained in the band spectra of diatomic molecules. (38°~ Such 
successes in G6ttingen quantum mechanics in computing the intensities of 
spectral lines had led Schr6dinger (in his second communication) to state: 
"The strength of Heisenberg's programme lies in the fact that it promises to 
give the line intensities, a question that we have not approached as yet. The 
strength of the present attempt [i.e., of wave mechanics] lies in the guiding 
physical point of view .... For me, personally, there is a special charm in the 
conception ... of the emitted frequencies as 'beats' which I believe will lead 
to an intuitive understanding of the intensity formulas. ''(383) 

On the other hand, the "guiding physical point of view," namely the 
"intuitive" picture of the process of emitting spectral lines in the atom, did 
cause Schr6dinger some problems. While the clarification was underway, 
Schr6dinger completed his not showing the relation of wave mechanical 
and matrix mechanical schemes. (349) In the last section of that paper, 
subtitled "Ausblick auf ein klassisches Verstiindnis der lntensitiit und 
Polarisation der emittierten Strahtung" ("Prospect of a Classical 
Understanding of the Intensity and Polarization of the Emitted 
Radiation"), he approached the intensity question from what he called "the 
cardinal question of all atomic dynamics..., that of the coupling between the 
dynamic process in the atom and the electromagnetic field. ''(384) He then 
concluded, in particular, that the component of the electric dipole moment 
in the direction of the (Cartesian) coordinate q~ determined the intensity 
and polarization of atomic radiation (emitted in the transition from the 
state k to the state m). Schr6dinger immediately used the result to calculate 
the intensities of the Stark components in the hydrogen spectrum. Thus, 
in the third paper of his series on "Quantisierung als Eigenwertproblem," 
submitted about four weeks after the paper on the equivalence proof, he 
presented the results on the Stark components for the four hydrogen lines 
Ha, He, H~, and Ha in four tables, each of which contained both the com- 
puted values and the experimental data for the components polarized 
parallel and transverse to the applied electric field. (385) 

Wolfgang Pauli had tried, after the calculation of the nonrelativistic 
hydrogen states, to obtain in matrix formulas for the intensities of the 
hydrogen lines also. (3s6) In spite of initially being very optimistic, he did 
not really make sufficient progress until several months later, i.e., after 
discovering wave mechanics. Then he wrote, for example, in a letter to 
Gregor Wentzel: 

The application to the hydrogen atom, for which Schr6dinger already calculated 
the eigenfunctions, is very simple, in principle, though not always so in technical 
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procedure. In particular, one obtains for the intensities of the series lines 
expressions that are rational functions of the quantum numbers, since the 
associated eigenfunctions are of the form of the exponential function times a 
polynomial. At first there result, however, intricate-looking (though finite) 
double sums, which I have not yet succeeded in simplifying in the general case. I 
am, however, convinced that essential simplifications are possible, perhaps even 
closed expressions might follow, t38v) 

A few weeks later, Pauli informed Alfred Land6 of his further progress: 
"Recently I have derived, based on the connection between 
Schr6dinger[-'s theory] and [the] G6ttingen [-theory], formulas for the 
absolute intensity of the Balmer lines. Ladenburg is supposed to test them 
by dispersion measurements. Since, however, Schr6dinger is calculating 
similar things himself, I do not yet know where, how, and when I shall 
publish the results. ''(388~ Finally, he again wrote to Wentzel: "Schr6dinger 
will publish my formulas on the H-intensities, such as I wrote to you some 
time ago, in his third communication--according to my 'letter-publication 
method' of long standing. ''/389~ 

At that time, Wentzel showed enthusiasm in exploring wave mechanics 
in order to solve all kinds of problems of atomic theory. For example, he 
worked on the intensities of the hydrogen spectrum--the discrete as well as 
the continuous part--, but Pauli informed him: "The normalization of the 
eigenfunctions of the continuous spectrum has already been worked out by 
Fues, and he has also made extended calculations on the subject. ''(389) 
Hence, Wentzel did not pursue the problem any further, but turned to a 
different intensity problem and published the results in a letter to 
Naturwissenschaften.~ 39° ) 

Wentzel got the idea of calculating the intensities of X-ray spectra 
from Schr6dinger's previous work on the intensities of the Stark effect com- 
ponents. Wentzel started his note by saying: "Schr6dinger has shown 
recently [,Ref. 349] that one can construct the matrices of Heisenberg's 
quantum mechanics from the eigenfunctions of his mechanical wave 
equation by simple quadratures. Therefore one is for the first time in 
possession of a generally applicable method of calculating the intensities of 
spectral lines on the prescriptions of quantum mechanics. ''(391) Since 
Schr6dinger had already solved the problem of the Stark effect intensities, 
in which--as we know--Wentzel was also interested, he used the method 
in a slightly modified problem, namely: "Instead like Schr6dinger [,in the 
case of the Stark effect (Schr6dinger, Ref. 379)], choosing a homogeneous, 
external [-electric] field, I have selected an internal central f ield as pertur- 
bation, and carried out the analogous calculation. ''(391) Thus he not only 
reproduced Schr6dinger's intensity ratios for the hydrogen Balmer lines in 
the case of no perturbation; in the case of finite perturbation through a 
central field, he obtained "another splitting of the lines than that by 
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Schr6dinger, namely the one corresponding to the series structure of the 
alkaline spectra and the X-ray spectra, respectively. ''(392) Wentzel hoped 
that the evaluation might provide a success similar to that of Schr6dinger 
for the Stark effect of hydrogen, expecting particularly reliable results for 
the spectrum of the lithium atom and the K- and L-lines of the X-ray 
spectra. 

Unfortunately, in the case of the lithium spectrum (having an 
especially close hydrogenlike structure) no intensity data were available on 
p-, d-, and f-terms, while in the X-ray spectra the existence of radiationless 
jumps could possibly spoil the comparison with the theoretical calculations. 
Still, Wentzel did refer to observations on the L-spectra of tungsten that 
had been published by Axel J6nsson from Uppsala in a recent issue of 
Zeitschrift fiir Physik. (393) He concluded in general a satisfactory 
agreement, if he compared the sum of the intensities of the two lines (for a 
Sommerfeld doublet) and the three lines (for so-called "composed 
doublets"), respectively. 

At the end of his note, Wentzel mentioned briefly that Helmut H6nl's 
intensity formulas for anomalous multiplets plus the associated selection 
rules (394) would also follow from the properties of Schr6dinger's eigen- 
functions--essentially integral relations between surface harmonics. 
Further, he argued that the intensity rules for rotation-oscillation band 
spectra, such as had been obtained earlier by Ralph Fowler on correspon- 
dence principle arguments, (395) could be derived from wave mechanics as 
well, because the eigenfunctions of the rigid rotator with free axis were 
related to the spherical harmonics/396) However, Erwin Fues would deal in 
greater detail with this problem in his second paper on the band spectra in 
wave mechanics. (397) 

Fues approached the problem with great care. He departed from a 
relation proposed by Schr6dinger in his fourth communication on 
"Quantisierung als Eigenwertproblem"(398): namely, that the spatial density 
of electricity in an atom was given by the product of the wave function 
with its complex conjugate q~. Now ~ contained all eigenvibrations of the 
system under investigation and therefore had to be written as 

~ = ~  a,u, expI2rci(~ t +6,) ] (173) 

with u/denoting the (time-independent) eigenfunction, Et the energy, 6t a 
phase connected with the /th eigenvalue, and at an amplitude factor-- 
which depended, for example, on excitation conditions, temperature, and 
radiation damping. The (j/)-component of the electric moment in the 
q-direction had the form 

mJq t = qjalq jt (174) 



Schriidinger and the Rise of Wave Mechanics 137 

and the entensity of the total radiation with frequency v jr in the direction q 
became 

Jv~ ~ ~) 4a2 a~(qS~) 2 ( 175 ) 

Thus the problem of calculating the intensity of the transition line vj~ 
consisted, up to a factor, of finding the matrix elements (qjZ)2, where q 
represented the various position variables of the system. 

In the case of the x-, y-, and z-vibrations of band spectra, the 
"relative" intensities---especially up to the frequency factor--are 

= ~ 2 UlnmZll 'n 'm'dt  (176) 
, m .~ 0 m' = 0 

Of course, the utn,~ were the eigenfunctions which he had calculated 
previously, and the t-integration extended over the entire three-dimensional 
space. In the case of the continuous spectrum he now derived the eigen- 
functions 

~'sin(m~) 
unto(E) = ar p(k-1)/2G,(E ' p) aoP,,,,,(cos O) . %  ~ cos(m~) (177) 

where the radial eigenfunction G,(E, p)--with E an eigenvalue in the 
continuum (i.e., for the two atoms of the molecule being separated---can be 
represented by exponential functions. (399) 

The evaluation of Eqs. (176) for the discrete molecular spectrum 
provided the known selection rules: thus, for the x- and y-components only 
transitions with m - m ' =  +1, and for the z-component only transitions 
with m = m', have finite intensities. All the nonzero components possess the 
same intensity, namely, 

=r°2\2J  l'! 3' with K= (178) t,,t,n, 4~c 2v o A 2 

After a lengthy calculation, Fues found--e.g., for transitions within the 
continuous spectrum of the diatomic molecule-a  result that formally 
resembled the expression for transitions between discrete states, Eq. (178), 
that is, 

where k' assumes a value of about 200, and e denotes the base of natural 
logarithm. In spite of several questionable assumptions which he made 

825/18/2-3 



138 Mehra 

along the way, Fues concluded that his result, namely, the intensity [of  the 
continuous spectrum] "starts with a nearly constant value right at the 
onset of the continuous spectrum, which therefore must possess a sharp 
edge, ''(4°°~ was correct at least in a qualitative sense. 

16.3. Second-Order Stark Effect and the Hydrogen Spectrum 

On July 16, 1926, [vat Waller from G6tteborg sent, in a letter to 
Erwin Schr6dinger, a copy of a paper on the calculation of the second- 
order Stark effect of hydrogen based on wave mechanicsJ 4°l) The first 
quantum mechanical calculation of the Stark effect had been performed by 
Wolfgang Pauli in the autumn of 1925 on the basis of the matrix theory, 
and had been included in Section 5 of his paper on the hydrogen 
spectrum. ~386) Pauli only took into account the effect proportional to the 
strength of the electric field, obtaining the so-called Stark effect of first 
order in complete agreement with the old result of Paul Epstein on the 
basis of the Bohr-Sommerfeld theory. (328) When Waller began to work on 
the problem, he knew--from a remark at the end of Schr6dinger's second 
communication(256/--that Schr6dinger had meanwhile arrived at the same 
conclusion in wave mechanics. Waller therefore immediately turned to the 
more complicated problem of the second-order Stark effect within the wave 
theory, asking in particular whether the terms proportional to the square 
of the electric field strength also came out the same as in the old quantum 
theory. He obtained the energy corrections in the electric field F (with 
E =  Eo + E1F+ E2F2 + ... V) as 

3h: 
El - 2 nne  (180a) 

8re meeZ 
and 

h 6 

E2 = 16(2rc)6 m3ee6Z 4 n4( 17n 2 - 3n~ - 9k 2 + 19) (180b) 

with 

- n + k + l < . n ~ < ~ n - k - 1  (180c) 

where n and k are integral numbers, and Ze is the charge of the nucleus. 
On the second-order term E 2, Waller remarked: "This expression deviates 
formally from the one given by Epstein only by the fact that the term + 19 
[in parentheses] has been added. One should note, however, that in the 
new quantum mechanics the value k = 0 is also admitted. Therefore, one 
obtains for small quantum numbers energy values that are totally different 
from Epstein's--for n = 1, e.g., the 4½-fold value. ''(4°2) 
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Waller was not the only one to arrive at Eqs. (180) for the Stark effect. 
On the same day as he signed his paper, June 18, 1926, the Zeitschri f tJhr 
Physik received a paper from Gregor Wentzel, in which he proposed 
an approximative solution method for Schr6dinger's equations. (4°3) On 
applying it to the hydrogen atom in a constant external electric field F, 
Wentzel found the energy formula 

2g2me e4 3h2F 
E~m2~3- h2n 2 8~2m~e n ( n l - n 2 )  

h6F 2 
lO_6.A 3 _6 n4[ 17n2 -- e(nl -- n2) 2 - -  8 ( / / 3  - -  1 )2 + 19] 

7* grt e e" 
(181) 

When one puts Z = I  in Waller's formulas (180), and in addition 
n e = n I - n  2 and k = n 3 -  1, then the identity of the two results becomes 
evident. Both Waller and Wentzel compared their formula to the available 
data on the second-order Stark effect, and found good agreement. 

Waller and Wentzel profitted in their contributions from the fortunate 
situation in that they learned of the recent work on atomic theory, in par- 
ticular the papers of Heisenberg and Schr6dinger, very early, often prior to 
publication. The physicists in America at that time did not share this 
advantage. Thus Carl Eckart in Pasadena only learned of Schr6dinger's 
Annalen der Physik communications on wave mechanics after considerable 
delay (about a couple of months), which took away priority from his own 
work on the equivalence proof. Eckart also expressed doubts about the 
completeness of the description of the hydrogen atom in wave mechanics 
without involving the electron spin hypothesis(4°4); he had no information 
about the discussions that were taking place on this subject thousands of 
miles away in Central Europe. (4°5) In July 1926, he knew that the problem 
of computing line intensities in the undulatory theory had meanwhile been 
solved for several atomic systems, such as the band spectra of diatomic 
molecules, the hydrogen spectrum and its Stark effect. Nevertheless, Eckart 
attacked the problem of computing the intensities of Balmer lines, but 
found that his results were not in agreement with observation. He noted, 
however: "The model is certainly incomplete, as is shown by the energy 
levels of the fine-structure predicted by this theory. The rotation [spin] of 
the electron ... is expected to remove this discrepancy. "(4°6) 

Whereas Eckart's results on the hydrogen line intensities appeared not 
to bear too much resemblance with observations, another wave mechanical 
calculation made in Pasadena, that of Paul Epstein on the Stark effect, 
certainly did. Epstein had (back in 1916, then at Munich) been responsible 
for the first successful interpretation of the Stark effect on the basis of the 
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Bohr-Sommerfeld theory. Now, in the early summer of 1926, he was 
drawn--partly by his younger associate Carl Eckart--into the undulatory 
theory of atoms which, he soon realized, "opens new avenues of thought 
and seems to afford our first glimpse of the true nature of the quanta. ''(4°71 
Epstein solved the differential equations for the Stark effect, obtaining 
eigenfunctions that could be expressed through hypergeometric functions. 
After a lengthy, but direct, evaluation he arrived at results for the energy 
terms which agreed in first order with the electric field strength with 
Waller's formula, Eq. (180a), if one replaces Wallet's integral quantum 
number ne by Epstein's (m-n ) .  His expression for the second-order Stark 
effect, namely (4°8) 

E 2 -  16Z4m3 ~ (mq-n-k-s) 4 [17 ( rn+n+s)  2 

--  3 (m --  n)  2 --  9s  2 q- 18s + 10 ]  (182) 

becomes identical with Wallers's Eq. (180b) if one puts D = F  and takes 
into account Epstein's different quantum numbers. In particular, there 
correspond: 

Epstein: ( m + n + s ) ,  ( m - n )  , ( s - l )  
(183) 

Waller: n , ne , k 

Epstein further calculated the intensities of the Stark lines with the help of 
the Schr6dinger-Eckart formulas for matrix elements. Epstein's intensity 
results did not fully coincide with those computed by Schr6dinger. 
Epstein's calculation of the Stark effect intensities was not only indepen- 
dent of Schr6dinger's, (398) but even yielded at times the more reliable result. 

During the later months of 1926, another topic would arise in wave 
mechanics on which European and American physicists would work 
independently: the rotator and the symmetrical top. We shall report about 
this competition later. 

16.4. Col l i s ion  Proces se s  in W a v e  M e c h a n i c s  

On June 25, 1926, the Zeitschrift fftr Physik received a "preliminary 
communication" that was entitled "Zur Quantenmechanik der 
Stoflvorggmge" ("On the Quantum Mechanics of Collision Processes"). (4°9) 
In the introduction to his note, Born explained the main goal of his com- 
munication: namely, to answer "the question about the very nature of 
[quantum-theoretical] 'transitions'. ''(41°) He argued that (the G6ttingen) 
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quantum mechanics constituted a logically complete theory which ought to 
describe the problem of atomic transitions properly. However, until now 
Born had not found a way of attacking the problem of transitions. Born 
also knew that in the collision problem continuous spectra of the particles 
involved in the interaction played a crucial role, hence the matrix 
formalism would not provide an easy access. Far more suitable appeared to 
be the operator methods, which he had developed at M.I.T. with the 
mathematician Norbert Wiener. (411) Since Schr6dinger's theory could be 
considered as an extension of the Born-Wiener operator approach, and 
Born knew about the equivalence of matrix and wave mechanics (from 
Pauli's letter to Jordan in G6ttingen, dated April 12, 1926), (363) he 
immediately turned to it, observing that it "alone proved to be [really] 
suitable in this case. "(412~ In his short note, Born discussed the introduction 
of a probability in the quantum mechanical collision problem; he argued, 
in particular, that it was necessary to give up the deterministic description of  
the scattering process. This conclusion became the starting point of a great 
debate that would be continued in the following decades. In a second paper 
on the quantum mechanics of collision processes, Born gave the details of 
the quantitative calculation; this paper was received four weeks later, on 
July 21, 1926, again by Zeitschriftfiir Physik. (413) 

The fact that Schr6dinger's wave mechanics allowed one to describe 
collision problems had induced Born to state in his first note: "1 wish to 
consider it, just because of this reason, to be the deepest formulation of the 
quantum laws. ''(414) Happily he went on to work out, in early summer of 
1926, the wave mechanical approach to general aperiodic atomic systems, 
i.e., situations in which the matrix mechanical description did not seem to 
be possible. The matrix formulation excluded the representation of atomic 
processes in space and time; in Schr6dinger's theory, on the other hand, the 
atomic processes were actually described by wave motions which, of 
course, possess reality in space and time. Still, Born concluded: "Neither of 
these two interpretations seems satisfactory to me. ''(4~51 He suggested a 
third interpretation emerging from a remark of Einstein, namely that the 
wave field associated with radiation guides the corpuscular light-quantum 
like a "ghost field" ("Gespensterfeld"), i.e., it possesses no energy and 
momentum and determines the probability of a light-quantum (which is 
the carrier of energy and momentum) proceeding along a definite path. If 
Schr6dinger's wave described the "ghost field" of mass particles, one had to 
conclude: "The guiding field, represented by a scalar function ~ of the 
coordinates of all particles involved and of time, propagates according to 
Schr6dinger's differential equation. Momentum and energy, however, are 
transferred in such a manner as if corpuscles (electrons) do actually rush 
around. The orbits of these corpuscles are determined only insofar as they 
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are restricted by energy and momentum conservation; apart from this, only 
a probability for taking a definite path is determined by the value dis- 
tribution of the O-function. ''(416) These statements involved a probability 
interpretation of the conventional orbit (a trajectory in space and time) of 
a particle; Born applied these ideas to extend the applications of quantum 
and wave mechanics to collision processes. (4~7~ Born's wave mechanical 
collision theory seemed to be well in accord with the observed phenomena. 
This success also encouraged Born to derive conclusions, from his 
statistical interpretation of matter waves, on the nature of radiation 
phenomena. He asserted that "quantum mechanics ... allows one to 
formulate and to solve the problem of transition processes," and that 
"Schr6dinger's scheme seems in this situation to be by far the most 
suitable, adequate description. "(418) 

16.5. Cracking the Helium Problem 

Heisenberg received the news about wave mechanics with some delay. 
He had left G6ttingen at the end of the winter semester (in late 
February 1926) for an extended vacation; from there he first went to 
Munich (at the beginning of April) and had written to Pagcual Jordan 
announcing that he would be back in G6ttingen on April 20 and then go 
on to Copenhagen on April 24 or 25, where he was supposed to take up his 
position as lecturer in theoretical physics. On his way to Copenhagen, 
however, he had to make two stops: first, he went to Leipzig to discuss the 
offer of an extraordinary professorship at the University (April 25 to 26); 
then he presented (on April 28) a talk on quantum mechanics at the Berlin 
Kolloqu~um. In Munich--at Sommerfetd's Institute--as in G6ttingen and 
Berlin, he certainly heard more about Schr6dinger's wave mechanics, but 
his many obligations did not leave him much time to take a deeper look at 
the new theory. Upon arriving in Copenhagen, he immediately assumed his 
duties as the successor of Hendrik Kramers, and simultaneously attacked a 
new task: the probtem of calculating the helium spectrum in quantum 
mechanics. 

The helium problem was an old acquaintance of Heisenberg's, and he 
had tried to develop a satisfactory theory of it since 1922. In this descrip- 
tion, based of course on the old (Bohr.-Sommerfeld) quantum theory of 
atomic structure, half-integral quantum numbers had played a crucial and 
controversial role. In the spring of 1926 such quantum numbers could be 
shown to arise at two different places in atomic theory: first, in the quan- 
tum mechanical formalism of angular momentum; and second, in the 
hypothesis of electron spin. The latter concept, especially, offered great 
hopes of providing a final, satisfactory solution of the helium problem. A 
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few days after his arrival (in late April 1926) in Copenhagen, Heisenberg 
wrote a postcard to Pauli in Hamburg stating that "we have found a 
rather decisive argument that your exclusion of equivalent orbits [of two 
electrons in an atom] is connected with the singlet-triplet separation," 
because: "Consider the energy written as a function of the transition 
probabilities. Then a large difference results, if one--at the energy of 
H atoms--has transition to 1S, or if, according to your ban [exclusion 
principle], one puts them equal to zero. That is, para- and ortho-['helium] 
do have independent energies, independently of the interaction between 
magnets [i.e., the magnetic moments associated with the spinning 
electrons]. ''~419) The new Copenhagen view seemed to be exactly along the 
lines on which Pauli expected to solve the helium problem, namely by a 
connection of his exclusion principle with the singlet-triplet separation. The 
idea now had to be carried out in a detailed quantum mechanical model, 
and this was what Heisenberg embarked on during the following three 
weeks. Then he rather happily reported to Born in G6ttingen: "Since 
coming here I have worked very seriously on the helium spectrum, and I 
believe that now all the essential things are right; however, I have not yet 
completed the quantitative calculation. ''~42°) 

In his letter to Born, Heisenberg presented the main physical ideas of 
his solution to the helium problem, which was based on the assumption 
that the difference between corresponding ortho- and para-helium states 
arose from the Coulomb repulsion of the electrons. If, in particular, two 
electrons move around a (heavy) nucleus and the mutual influence of the 
electron spins was neglected, the (matrix) Hamiltonian of the system, H °, 
consisted of the terms H ~ and H b, each referring to one electron moving 
under the influence of the Coulomb field of an effective nucleus (having a 
charge between e and 2e, due to the shielding of the other electron). Since 
the energy states H a and H b w e r e  exactly identical, the Hamiltonian H ° 
exhibited a particular degeneracy: the exchange of the two electrons in two 
different states, say W, and Wm, would not alter the energy values of /4  °. 
Only the Coulomb repulsion of the electrons removed the degeneracy; it 
could be treated in a matrix perturbation theory, yielding the first-order 
corrections 

and 

Wl°m = Hl(nm, nm) + Hl(nm, ran) (184a) 

W ~  = Hl (nm, nm ) - Hl (nm, ran) (184b) 

Heisenberg commented on these results with the words: "For all following 
considerations the decisive result now is: The term system can be divided 
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into two separate parts (e and x ), such that transitions occur only within 
the * system or within the x system, but never from the • system to the 
x system. "(42°) 

Heisenberg assembled the details, which he had worked out, in a 
paper and submitted it two weeks later to Zeitsehriftfiir Physik .  (421) One of 
the major points proved in this paper was the fact that no transitions 
occurred between (o) and ( x )  terms. The reason was that the radiation 
amplitudes f,~,~.,2m~ of the unperturbed two-electron system were sym- 
metric with respect to the exchange of the two electrons--i.e., J~lm~,,2,,2 = 
fm~l,m:,2--and the perturbed amplitudes obtained through a canonical 
transformation could be found to be 

f~im,n2m=fn,m,n~m+fnl . . . .  2 (185a) 

for the transition between the dot-terms (nam)~(n2m) with nl,n~ <m, 
and 

f ~  . . . .  2=Ljm,,2m--fm,~ .... 2 (185b) 

for the transitions between the dot- and cross-terms ( n l m ) ~  (mn2) with 
nl, n2 < m. Evidently, the right-hand side of Eq. (185b) is zero and that of 
Eq. (185a) is finite. Finally, the singlet-triplet separation assumed the value 

A,,,~ = 2H(nm, mn) (186) 

where the perturbation matrix element Hl(nm, mn) would be physically 
interpreted as the difference of the perturbation energies created by the 
Coulomb repulsion between the electrons. The very same quantity should 
be responsible for the so-called Rydberg correction in the empirical term 
formula for the helium atom. 

The above consideration could be extended to the case of the two- 
electron atom containing real electrons with spin and associated magnetic 
moment. Again Heisenberg found that only transitions between dot- or 
cross-terms were possible (i.e., possessed finite amplitude). In this case each 
term system consisted of a singlet and a triplet system; the separation 
between similar terms of the singlet and the triplet, respectively, 
assumed--up to a small correction emerging from the magnet-magnet 
interaction--the value given by Eq. (186). Only one of the superterm 
systems, namely the one with triplet terms for ortho-helium and with 
singlet terms for para-helium, existed in nature. 

At the time of writing his fundamental paper on the quantum 
mechanics of many-electron systems, Heisenberg also studied (in some 
detail) Schr6dinger's first publications on wave mechanics. Indeed, he 
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outlined at the end of Section 2 of his paper (dealing with the transition 
amplitudes between the term systems without electron spin) how to 
formulate the two-electron system in the language of undulatory theory. 
Thus the wave mechanical formulation offered a comfortable access to 
many-electron systems in quantum mechanics. Heisenberg said: "The great 
achievement of Schr6dinger's theory is the calculation of matrix elements .... 
For the moment I want to go to Norway ... and to calculate there--besides 
mountaineering-quantitatively the helium spectrum. Why should one not 
once 'use the steamroller'? ''(422) A few weeks after this vacation, the 
Zeitschrift fiir Physik received a second paper from Heisenberg on July 24, 
in which he presented his calculation of the helium and heliumlike spectra, 
i.e., the spectra of the series He, Li +, and Be ++, etc. (423) Heisenberg 
obtained a general formula for the fine structure of two-electron spectra. In 
the special case of 2p-terms, where reliable data existed at that time, the 
formula 

followed for the triplet separation (k = 1, j =  2, 1, 0). The pattern for the 
transition lines 2p ~ 2s, derived from Eq. (187), showed in the case of He 
two strong lines of narrow distance and a third faint line, and in the case of 
Li + three fairly separated lines, of which the third was much weaker. 
Qualitatively, this picture, especially the quasi-doublet structure of the 
ortho-helium lines, agreed with the then available data. Heisenberg was led 
to the following conclusion: "By the calculations carried out [in this 
paper] we wanted to show that quantum mechanics allows, even for atoms 
with two electrons, a quantitative description of the spectrum including 
finer details, and that the theory permits one to determine approximately 
the terms as a function of the quantum numbers. ''(424) At the same time, he 
pointed out the shortcomings of his approach, namely: (i) the lack of foun- 
dation in selecting the dot system (*), and (ii) the lack of accuracy in the 
calculations. Concerning the latter he added: "One should demand that the 
theoretical term values are computed so exactly that the agreement of these 
term values with the experimental values can be tested up to the last 
decimal. ''(424) In agreement with these statements, Heisenberg wrote to 
Pauli: "I have now submitted my paper on the helium spectrum, with 
dubious feelings, but [I am] not quite satisfied. All the calculations are too 
inaccurate and incomplete; the nicest thing is still the fine structure which 
comes out alright. In any case there remains, as far as quantitative 
agreement [with experiment] is concerned, much to be done. ''(425) 

Heisenberg's dissatisfaction notwithstanding, his helium calculation 
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constitued a major triumph for quantum mechanics. It remained one of the 
standard approaches to two-electron problems which would be discussed in 
all later reviews of the topic; Heisenberg's successors would improve the 
approximation methodsw-so as to allow the treatment of the helium 
ground state or the excited S states--but the basic ideas did not have to be 
altered. In this respect, Heisenberg's helium calculation became a classic in 
atomic theory, and several decades later he recalled: "I used Schr6dinger's 
formalism for help with the mathematics. It was clear to me that in order 
to calculate the shift of levels in the helium atom, matrix elements were 
needed, and they could be calculated quite well from Schr6dinger's scheme. 
Such a calculation in matrix mechanics would have been difficult. ''(426) 
Thus the helium calculation--in spite of the fact that wave mechanical 
methods entered into it only as a tool for evaluating complicated matrix 
elements--also represented a major triumph of Schr6dinger's theory, 
perhaps one of the greatest in view of the many unsuccessful efforts during 
the first half of the 1920s. 

16.6. Symmetry Properties of Wave Functions and Quantum Statistics 

Since Paul Dirac had developed a good quantum mechanical scheme 
of his own and was pursuing its consequences, (427) he was delayed in 
reading Schr6dinger's first communication on wave mechanics. When he 
finally did study it, he was a trifle annoyed because he now had to learn 
about another method which obviously also worked well. In contrast to the 
people at G6ttingen, however, whose first reaction was that Schr6dinger's 
wave function could not have any real physical meaning, Dirac had no 
philosophical prejudice against it. Writing on "The Theory of Quantum 
Mechanics" in August 1926, Dirac referred to Schr6dinger's work. (428). He 
first mentioned the results which he had obtained earlier in attempting to 
solve the many-electron problem. <429) There the difficulty had arisen in 
finding a suitable set of "uniformizing" dynamical variables; it was connec- 
ted the existence of an exchange phenomenon, noted for the first time by 
Heisenberg, arising from the fact that electrons are not distinguishable 
from each other. (421) 

As was customary with him, Dirac first recast Schr6dinger's theory in 
his own formalism. He noted the fact that, just as one might consider p and 
q as dynamical variables, one should also consider the negative energy - E  
and the time t as variables corresponding to the differential relations 

h ~  h 8  
pr= --i----2nSq, and - E =  -i2--~8t (188) 

He had already introduced this step a few months earlier in a paper on 



Schr~dinger and the Rise of Wave Mechanics 147 

"Relativity Quantum Mechanics with an Application to Compton Scat- 
tering," where he talked about "quantum time" with a view to introducing 
relativity into quantum mechanics. (43°) From Eq. (188) he drew two 
conclusions: first, that only rational integral functions of E and p have 
meaning; second, that one cannot multiply, in general, an equation 
containing the p's and E by a factor from the right-hand side. Dirac then 
rewrote the Schr6dinger equation in the form 

f(qr,  Pr, t, E) ~ = [H(qr, Pr, t) - E] O = 0 (189) 

remarking that Heisenberg's original quantum mechanics follows from a 
special choice of the eigenfunctions. 

In Section 4 of the same paper, (428) dealing with the Schr6dinger 
equation, Dirac proceeded to make another very important contribution 
by giving a general treatment of systems containing several identical 
particles. Dirac said that if there is a system with, say, two electrons, and 
one considers two states (ran) or, more accurately, (m(1),n(2)) and 
(m(2), n(1)), which are distinguished only by the fact that in the second 
state the two electrons have been interchanged, then according to his and 
Heisenberg's scheme, one has to count the two states as one. (43~) With this 
counting procedure, however, one cannot easily describe functions which 
are antisymmetrical in the electron coordinates. The general expression for 
the two-particle eigenfunction is 

Omn = amn~tm(1)  tPn(2) + bmn~tm(2)  O,,( 1 ) (190) 

There exist, however, only two choices for the coefficients a and b. Either 

a,~n = bran symmetrical case (Bose-Einstein statistics), (191) 

or  

a,~n = -bmn antisymmetrical case (Fermi-Dirac statistics) (192) 

The latter case follows from Pauli's exclusion principle which holds for 
electrons. He then went on to consider gases of free particles in a volume V, 
obeying either Bose-Einstein statistics or the statistics deduced from the 
exclusion principle. For a number N, of particles in the sthe set (having the 
energy Es), he derived 

As 
N s = 

(~ + Es~ 
e x p \  k T  / + 1  
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where 

El~2 dE A s = 2 ~ V ( 2 m )  3/2 , (193) 

and e is related to the density. 
Dirac's recognition of the new statistics was antedated by the work of 

Enrico Fermi, who had obtained the same result several months earlier. (432) 
As Dirac recalled: "I had read Fermi's paper about Fermi statistics and 
forgotten it completely. When I wrote up my work on the antisymmetric 
wave functions, I just did not refer to it at all. Then Fermi wrote and told 
me and I remembered that I had previously read about it. (433) At the time 
when Dirac read Fermi's paper, it did not strike him as being important 
and it completely slipped his mind. A few months later he rediscovered that 
result, and the new statistics has since then been called "Fermi Dirac 
statistics." In his work, Dirac went beyond Fermi and linked the two 
statistics to the symmetry properties of the eigenfunctions. This was a most 
important point which had to do with a deeper discussion of the problem 
of identical particles. Dirac had not pondered about statistics until this 
problem became "pretty obvious" to him. When he saw the problem, 
however, he immediately found the solution. In all this, the Schr6dinger 
function obviously helped him a lot and automatically led him to consider 
the symmetry properties of a function describing several identical particles. 
Another important factor in his new considerations, the exclusion principle, 
had also not concerned him before at all, but when he had to decide the 
question whether a wave function is symmetric or antisymmetric in the 
exchange of two-electron coordinates, he reminded himself of Pauli's rule. 

17. TOWARDS AN UNDULATORY INTERPRETATION 
OF ATOMIC PHENOMENA;  FURTHER APPLICATIONS 
OF WAVE MECHANICS 

17.1. Early Expressions of Schr6dinger's Undulatory View 
of Atomic Processes 

The desire to develop an undulatory interpretation of atomic processes 
arose in Schr6dinger as a result of his successful applications of Louis de 
Broglie's idea of matter waves: first to derive Einstein's theory of ideal 
gases and then to obtain a consistent description of the nonrelativistic 
hydrogen atom. Once the wave equation had been shown to yield the 
correct energy states of the hydrogen atom and, within this context, an 
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intuitive (anschauliche) explanation of the quantization condition--which 
Schr6dinger thought to be an arbitrary and unnatural imposition on the 
dynamical equations of the electron--the question had to be asked as to 
what was really oscillating within the atoms. That is, historically, 
Schr6dinger's wave equation did not grow out of his preconception of an 
undulatory description of atoms; rather, the evidently successful wave 
equation urgently demanded the development of such a description. 

Schr6dinger stated everything that he knew or considered on the 
subject of atomic eigenvibrations in his notebook on "Eigenwertproblem des 
Atoms. II," whether it led to a solution or not, and whether he used it or 
not in his later paper. The statements in the first communication of 
January 1926, such as, "It is, of course, strongly suggested that we should 
try to connect the function ~ with some vibration process in the atom, 
which would more nearly approach reality than the electronic orbits" and 
"l originally intended to found the new quantum conditions in this more 
intuitive manner, ''(434~ should not be taken to indicate already the existence 
of such an "intuitive manner," but rather a future program which 
Schr6dinger worked out piece by piece during the following several 
months, partly in connection with his attempt to provide a general foun- 
dation to wave mechanics, and partly in response to specific questions 
asked by his correspondents. 

The "Hamiltonian analogy between mechanics and optics," which 
Schr6dinger presented in Section 1 and applied to atomic theory in 
Section 2 of his second communication, (435) contains the earliest aspects of 
what he meant by this "intuitive" picture. Of course, we have to bear in 
mind that a formal or mathematical analogy between (classical or quan- 
tum-theoretical) atomic dynamics and the methods used to describe the 
behavior of optical systems is not the same as an undulatory interpretation 
of the former. The outlines of such an interpretation may be gathered from 
the following programmatic statements by Schr6dinger: 

The true mechanical process is realized or represented in a fitting way by the 
wave processes in [a non-Euclidean, many-dimensional]  q-space .... A 
macroscopic mechanical process . .~can approximately enough be regarded as 
confined to a point compared with the geometrical structure of the path.... This 
manner  of treatment, however, loses all meaning where the structure of the path 
is no longer very large compared with the wavelength or indeed is comparable 
with it. Then we must  treat the matter  strictly on the wave theory, i.e., we must  
proceed from the wave equation and not from the fundamental  equations of 
mechanics, in order to form a picture of the manifold of the possible 
processes. (436} 

The crucial wavelength which limits the validity of the (classical) 
mechanical description had been provided by Louis de Broglie. 
Schr6dinger remarked: 
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In this sense do I interpret the "phase waves" which, according to de Broglie, 
accompany the path of the electron; in the sense, therefore, that no special 
meaning is to be attached to the electronic path itself (at any rate, in the interior 
of the atom), and still less to the position of the electron on its pathJ 437) 

Up to now Schr6dinger's remarks concerning a wave interpretation 
associated with this wave equation formalism (and contained in the first 
two communications completed by the end of February 1926) did not 
proceed beyond the immediate visualization of the mathematical results. 
One thing appeared to be absolutely clear: "The 0-vibrations are of course 
not electromagnetic vibrations in the old [classical] sense. ''(277) However, a 
relation had to exist between the matter vibrations and the 
Maxwell-Lorentz electromagnetic current, and Schr6dinger suggested: 
"The 0-vibrations must then corrrespond to the four-current, i.e., the 
[Maxwell-Lorentz] four-current must be replaced by something derived 
from the function 0, say the four-dimensional gradient of 0. But this is all 
pure fantasy; in reality, I have still not thought about it at all. ''(2v7) 

On the other hand, Schr6dinger had pondered on Sommerfeld's 
doubts concerning the physical reality of matter waves and arrived at the 
conclusion: "By the way, my general presentation [of wave mechanics in 
the second communication (256)] approaches your wishes on a second point, 
namely with respect to the physical reality of 0-vibrations. Due to the fact 
that in general 0 depends on many more than three variables, the 
immediate interpretation [of the matter wave] in three-dimensional space 
is rendered difficult in any desirable manner. "(277) 

In a letter written to Erwin Schr6dinger, the Munich experimentalist 
Wilhelm Wien praised the fact that the new theory had solved "the 
problem of atomic vibrations, and this fortunately in close connection with 
the classical theory. ''(43.) He had evidently missed a close connection with 
the classical theory in the theoretical work on atomic physics of the past 
few years. In a footnote in his paper on the equivalence of his wave 
mechanics to the G6ttingen quantum mechanics, Schr6dinger supported 
Wien's point of view, when he emphasized: "I am not aware at all of any 
generic relation [of wave mechanics] with Heisenberg's [matrix 
mechanics]. I naturally knew about his theory, but I was discouraged 
(abgeschreckt),  if not repelled (abgestoflen), by what appeared to me as 
very difficult methods of transcendental algebra, defying any visualization 
( Anschaulichkeit  )."(439 ) 

On March 19, t926, after submitting the paper containing the formal 
equivalence between the wave and matrix mechanical methods, (439) 
Schr6dinger reported to Wien happily that "the relationship with Heisen- 
berg['s mechanics] is now completely clarified, namely in the sense that 
anybody who does not wish to calculate with matrices need not do so", he 
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further emphasized: "As far as physics is concerned, my own theory 
definitely appears to me to be considerably more satisfactory and capable 
of extension, because one has visualizability (Anschauung) as a guide. ''~346) 

These optimistic opinions notwithstanding, Schr6dinger was only able 
to put forward some general points of view in favor of the "intuitiveness" of 
wave mechanics. These he summarized in Section 5 of the paper on 
equivalence under the title "Vergleich der beiden Theorien" ("Comparison 
of the Two Theories")/3491 Schr6dinger noted that matrix mechanics "does 
not tempt us, due to the complete absence of visualizability (Anschauung), 
to form space-time pictures of what happens in atoms; pictures, which must 
perhaps, remain uncontrollable in principle. ''(44°) Still, the actual situation 
was not all that simple due to the formal equivalence between the 
corresponding mathematical expressions in the wave and matrix descrip- 
tions (which Schr6dinger had himself shown). He explained: ,,The 
equivalence exists in reality, and it also exists in the reverse direction, (44°) 
arguing that from the matrices one is able to construct eigenfunctions 
fully. ~4411 Hence it was possible, in principle, to derive from matrix 
mechanics the intuitive (anschauliehe) pictures of wave mechanics by 
applying a clear mathematical procedure. In spite of this conclusion, 
Schr6dinger added a warning, namely, "that the thesis that mathematical 
equivalence and physical equivalence are the same can, on the whole, be 
considered as having only restricted validity at all. ''(4421 In particular, 
Schr6dinger expected that wave mechanics alone was most likely capable 
of treating processes including the collision of atoms with electrons, 
a-particles, or molecules. He claimed: "To approach [the theoretical 
description] of such problems, it is quite necessary to oversee clearly the 
transitions between the macroscopic, visualizable mechanics and the micro- 
mechanics of an atom .... To me it seems extraordinarily difficult to tackle 
problems of the kind mentioned above, as long, as we feel obliged on 
epistemological grounds to suppress intuition in atomic dynamics, and to 
operate only with such abstract concepts like transition probabilities, 
energy levels, etc. ''(443) 

17.2. The "Real" Wave Equation and Time-Dependent Theory 

On June 18, 1926, Erwin Schr6dinger wrote to Wilhelm Wien: "I am 
just giving the final touches to the fourth communication, which I shall 
send off, if not tomorrow, then on Monday. With its completion several, 
quite heavy burdens are lifted from my heart: namely, first, the electro- 
dynamical significance of ~b in the case of [systems of] more than three 
degrees of freedom; second, the definition of the concept of electric current 
density, which was indispensable in complementing the concept of charge 
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density; and as a third point, last but not least, the coupling between the 
eigenvibrations and the electromagnetic field. That problem could be 
solved, for the moment at least, in the case of an incident [electromagnetic] 
wave, in a straightforward manner without involving any new assumptions. 
I hope that it will not be too difficult to generalize the treatment so as to 
take into account the back-coupling of the self-emitted wave [by the 
atomic system ]- -but  I no longer wanted to keep back the results reached 
SO far . . . .  ''(444) 

With these words of satisNction Schr6dinger informed Wien of the 
major progress he had achieved during the weeks since submitting his last, 
third communication on wave mechanics. This progress included new 
insights into several of the remaining problems of the undulatory descrip- 
tion of atomic phenomena and, especially, an important generalization of 
the mathematical scheme of the theory, The heart of this scheme was a new 
wave equation, which has sometimes been called "Schr6dinger's second 
equation." As Eugene Wigner recalled six decades after the appearance of 
this equation: "Schrgdinger's 'second equation' was immensely important 
even though it was little emphasized by him or, actually, by anybody else 
at the time it appeared. But it was soon very generally recognized--~it gave 
quantum mechanics a much more general, and much more traditional, 
basis than the original, given by Heisenberg [: quantum mechanics gave 
the energy levels and transition probabilities]. I recall how much I was 
delighted when reading and understanding it. ''(445) 

Wigner recognized--in the fourth communication (Part IV) of 
Schr6dinger's series on wave mechanics--nothing other than a second, 
fundamental wave equation; and he claimed that it was actually this 
equation which eventually deepened and generalized the basis of the new 
atomic theory beyond that which Heisenberg and his collaborators had 
already obtained and Schr6dinger, with his "first" wave equation, had only 
confirmed. How did Schr6dinger, the creator of the second wave equation, 
judge the situation in June 19267 

Schr6dinger explained the necessity of generalizing the previous 
theory, right at the beginning of the fourth communication in quite some 
detail. The old wave equation (of Parts I and II), notably 

Atp 2(E-E 2 V) (~20(?t2 = 0  (194) 

o r  
87~ 2 

Atp +-£7- (E -  V) ~,=0 (195) 

(where E is the total energy, V is the potential energy of the system under 
consideration, and h is Planck's constant), he argued, "suffers from the dis- 
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advantage that it expresses the taw of variation of the 'mechanical field 
scalar' 0, neither uniformly nor generally. ''(446) These equations hold, in 
particular, only for a given energy of the system under investigation; hence 
the time-dependence of 4/described by the undulatory theory developed so 
far is restricted to a periodic factor 

0=O0(x)exp  _+ -h-Et  (196) 

and consequently the wave equation reduces to an equation for the 
amplitude ~b(x), with x denoting the space variables. This fact restricts the 
applicability of the theory to those atomic systems whose potential energy 
does not depend explicitly on time, i.e., to conservative systems. 
Schrrdinger then wrote: "There arises, however, an urgent need for the 
extension of the theory to nonconservative systems, because it is only in 
that way that we can study the behavior of a system under the influence of 
prescribed external forces, e.g., a light wave, or a strange atom flying 
past. ''(447) For that purpose, he argued, one must abandon the amplitude 
equation and "search for the real wave equation. ''(447) 

In order to obtain the "real" equation, one may depart from the 
identity 

02t~ 4~2E 2 
c~t~ - h ~  tp (197) 

which is valid for conservative systems, and insert it into Eq. (195). Thus 
one arrives at the higher-order wave equation 

8TC2 )2 16~Z2 C~2~ 
a - - U v  a-V : °  (198) 

which should be valid for "every ~ which depends on time as in 
[Eq. (196)], though with E arbitrary, and consequently also for every 
which can be expanded in a Fourier series with respect to the time. ''(447) 
Now Schr6dinger claimed: Eq. [(196)] is thus evidently the uniform and 
general wave equation for the field scalar ~.,,(44s) 

Schr6dinger was not afraid of the mathematical complications of 
higher-order equations; the methods of their solution were well known in 
principle and treated, for example, in the book by Courant and Hilbert. (4491 
Moreover, he saw immediately that Eq. (198), in the case of time-indepen- 
dent potentials V, could be written simply as 

A 8rc2 V 8rC2 E'~ /zl 8~z2 V 8rc2 \ 
- 7  +-v- - 7  (199) 

825/18/2-4 
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that is, a decomposition into the original, second-order equation (195) was 
possible. (45°) 

In the case of the time-dependent cases, it was possible to write a 
second-order differential equation by considering the fact that the time 
dependence of the wave equation might be expressed not by the second- 
order differential equation (197) but rather by the linear relation 

~?~ 2~i 
--at = +- ~ E~, (200) 

When one used this relation in conjunction with Eq. (195), the second- 
order wave equation 

8 ~  2 ~- 4~zi ~?0 
At ) - - -  7- V = 0  (201) 

h & t /  

resulted. The price one had to pay was that the wave function 0 satisfying 
Eq. (201) definitely became a complex object. Schr6dinger now declared 
that Eq. (201) constituted the "real wave equation" and took it as the basis 
of his further considerations of atomic systems. 

The applications of the new, '°second equation" covered Sections 2-5 
of Schr6dinger's fourth communication. (446~ However, instead of developing 
the most general time-dependent scheme, Schr6dinger restricted himself 
essentially to treating dispersion phenomena, i.e., the interaction of external 
radiation with atoms. Of course, the dispersion phenomena represented 
important physical examples and had played a crucial role in recent quan- 
tum-theoretical investigations; in Schr6dinger's opinion, they were also 
supposed to throw light on the "coupling between the eigenvibrations [of 
the atom] and the atom and the electromagnetic field," the crucial question 
emphasized repeatedly in his letters to Wilhelm Wien. The preference for 
first applying the time-dependent theory to dispersion phenomena was not 
a unilateral decision by Erwin Schr6dinger, but would soon be shared by 
Paul Dirac. In Section 5 of his paper "On the Theory of Quantum 
Mechanics'--which was submitted before Schr6dinger's fourth com- 
munication appeared in print--Paul Dirac sketched independently a time- 
dependent perturbation theory of wave mechanics. (42~) He immediately 
used this formalism to calculate the equilibrium of radiation and atoms, (451) 
but in later papers he turned to dealing with more genuine dispersion 
phenomena.~452) 

In his letter to Erwin Schr6dinger, dated June 23, 1926, Wilhelm Wien 
reassured his colleague that he considered wave mechanics an important 
step toward a final solution of the quantum problem. He wrote: "It is 
remarkable what you have achieved in a short time. ''(453) Wien had heard 
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from Sommerfeld--who had just returned from a visit to Zurich(444)~that 
Schr6dinger was seriously contemplating passing through Munich in early 
July; thus he added in his letter: "All the physicists in Munich would really 
be delighted, since we then hope to have your theory presented to us by 
you, instead of by [Constantin] Carath60dory and [Gregor] Wentzel--for 
only those who have already studied your papers can understand their 
presentation."(453) 

From the spring of 1926, Max Planck in Berlin and Wilhelm Wien 
and Arnold Sommerfeld in Munich had repeatedly invited Erwin 
Schr6dinger to come to Berlin and Munich, respectively, and speak on his 
new atomic theory. Schr6dinger, who was extremely happy about the 
appraisal and approval that his work had received in both places, actually 
fulfilled these pressing and welcome invitations as soon as he could free 
himself from the obligations of the summer semester in Zurich. He first 
travelled to Berlin and spoke before the Physical Society on July 16 on the 
"Grundlagen einer auf Wellenlehre Begriindeten Atomphysik" ("Foundations 
of an Atomic Physics Based on Wave Theory"). (454~ He stayed on in Berlin 
for a few days, as a personal guest of Max Planck, and then he returned to 
Zurich via Munch. In Munich he delivered a similar lecture, entitled 
"Grundlagen einer auf Wellenlehre begriindeten Atomphysik" ("Basic ideas 
of an Atomic Physics Founded on Wave Theory") to the Bavarian Section 
(Gauverein) of the German Physical Society on July 23, 1926. (455~ 

The time was indeed ripe for a first review of wave mechanics by its 
creator. Schr6dinger had especially available the results of his fourth com- 
munication, in which the theory had received an important generalization 
and--as it seemed to Schr6dinger-a reasonably anschauliche inter- 
pretation also. Since no manuscript or publication exists of the Berlin and 
Munich lectures, we do not know in detail the topics he discussed there. 
However, about a month later (on September 3, 1926) Schr6dinger signed 
a paper in English, entitled "An Undulatory Theory of the Mechanics of 
Atoms and Molecules" and submitted it to the Physical Review, where it 
appeared in the December issue. (456) It can safely be assumed that this 
review (for the American public) essentially contained the material of the 
Berlin and Munich talks. Hence we shall reproduce here the titles of the 
sections as given in the paper's extract: 

1. The Hamiltonian analogy between mechanics and optics. 
2. The analogy is to be extended to include real "physical" or 

"undulatory" mechanics instead of mere geometrical mechanics. 
3. The significance of wavelength; macromechanical and micro- 

mechanical problems. 
4. The wave equation and its application to the hydrogen atom. 
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5. The intrinsic reason for the appearance of discrete characteristic 
frequencies. 

6. Other problems; intensity of emitted light. 
7. The wave equation derived from a Hamiltonian variation prin- 

ciple; generalization to an arbitrary conservative system. 
8. The wave function physically means and determines a continuous 

distribution of electricity in space, the fluctuations of which deter- 
mine the radiation by the laws of ordinary electrodynamics. 

9. Nonconservative systems. Theory of dispersion and scattering and 
of the "transitions" between the "stationary states." 

10. The question of relativity and the action of a magnetic field. 
Incompleteness of that part of the theoryJ 457) 

From these contents it becomes evident that Schr6dinger covered in 
his review all the results he had hitherto obtained in his main 
communications. (244'256'379'446) Interestingly enough, he left out a closer 
discussion of the formal equivalence of the undulatory and matrix 
mechanics. (349) But, psychologically, in a review advocating "the extreme 
conception ''(4s7) of wave mechanics, such an omission of matrix mechanics 
may have been well motivated. In any case, Schr6dinger advocated the new 
theory by pointing out the following "chief advantages": 

(a) The laws of motion and the quantum conditions are deduced 
simultaneously from one simple Hamiltonian principle. 

(b) The discrepancy hitherto existing in quantum theory between the 
frequency of motion and the frequency of emission disappears 
insofar as the latter frequencies coincide with the differences of the 
former. A definite localization of the electric charge in space and 
time can be associated with the wave system and this with the aid 
of ordinary electrodynamics accounts for the frequencies, inten- 
sities, and polarizations of the emitted light and makes super- 
fluous all sorts of correspondence and selection principles. 

(c) It seems possible by the new theory to pursue in all detail the 
so-called "transitions," which up to now have been wholly 
mysterious. 

(d) There are several instances of disagreement between the new 
theory and the older one as to the particular values of energy or 
frequency levels. In these cases it is the new theory that is better 
supported by experiment. (458) 

What were the difficulties of his theory that Schr6dinger had pointed 
out? In his account for the Physical Review, he mentioned the incom- 
pleteness of the relativistic and magnetic part of wave mechanics, in par- 
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ticular, the fact that the well-known fine-structure formula for hydrogen 
did not come out. "The deficiency must be intimately connected with 
Uhlenbeck-Goudsmit's theory of the spinning electron," he suggested 
finally, and added: "But in what way the electron spin has to be taken into 
account in the present theory is yet unknown. ''(459) Another difficulty, 
mainly of conceptual understanding, can be seen by looking at the end of 
the fourth communication. There, Schr6dinger had stated: "Meantime, 
there is no doubt a certain crudeness in the use of a complex wave function. 
If it were unavoidable in principle, and not merely a facilitation of the 
calculation, this would mean that there are in principle two wave functions, 
which must be used together in order to obtain information on the state of 
the system. ''(46°) However, he hoped that the complexity of the wave 
function existed in a formal way only and might be replaced perhaps by a 
real wave function and its time derivative, a possibility which he considered 
to be "the very much more congenial (sympathischere) interpretation. ''(46°) 
At that moment this question could not be decided, because Schr6dinger 
had not yet succeeded in replacing Eq. (201)--which introduced the com- 
plexity of the wave function--with a suitable real fourth-order equation for 
nonconservative or time-dependent systems. 

How did Schr6dinger's audience react to his presentation of the 
theory? In general, the physicists in Berlin, especially Max Planck and 
Albert Einstein, were very impressed. Einstein, for example, wrote to 
Arnold Sommerfeld: "Of the new attempts to obtain a deeper formulation 
of the quantum laws, I like that of Schr6dinger most. if only the 
undulatory fields introduced by it could be transplanted from the n-dimen- 
sional coordinate space into the three- or four-dimensional one, 
respectively !" (461 ) 

As far as the Munich lecture is concerned, we have the report of 
Werner Heisenberg, the originator of the competing atomic theory. Many 
decades later, Heisenberg vividly recalled Schr6dinger's colloquium and the 
discussion afterwards. Thus, for instance, he related in 1968: 

In July 1926 Schr6dinger was invited to Munich by Wilhelm Wien to report on 
his theory. The experimental physicists in Munich, headed by Wien, were 
enthusiastic about the possibility that now perhaps this whole "quantum 
mystery of atomic physics" might be dealt with, and one would be able to return 
to the classical concept of honest fields, such as one had learned from Maxwell's 
[electromagnetic] theory. I listened to this lecture by Schr6dinger, as I was then 
staying with my parents in Munich for the vacation; and I was then really quite 
horrified by his interpretation, because I simply could not believe it. I objected 
in the discussion that with such an interpretation one would not even be able to 
explain Planck's heat radiation law. But general opinion at that time was 
extremely hostile toward my objection. Wien answered me very harshly in that 
he could understand that now I felt sad about the fact that the whole quantum 
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jumping, the matrices and all that had become superfluous; but it would be 
better, anyway, for me to leave the field to Schr6dinger, who would certainly 
solve all the difficulties in the [near]  future. This was not very encouraging; I 
did not have the slightest chance to get across my point of view in the 
discussion, ~462) 

One of the reasons for the unpleasant encounter between Heisenberg 
and Wien (after Schr6dinger's lecture at Munich) must be sought in the 
earlier history of the Heisenberg-Wien relations. Back in July 1923, Heisen- 
berg had practically failed in the experimental part of the examination for 
his doctorate with Wien. At that time, Wilhelm Wien had formed the 
opinion that the young candidate had not learned "decent physics" 
seriously enough. Moreover, the later development of atomic theory, in 
which Heisenberg played an increasingly important role, did not impress 
Wien favorably. He certainly had people like Heisenberg in mind when he 
wrote to Schr6dinger, before the latter's visit to Munich, that he had 
not only disliked the erstwhile status of atomic theory and had stopped 
following it, but also: "Not least was I worried that the young physicists no 
longer realize what one is really looking for from a physical theory. ''(453~ 
Wien had declared that the "quagmire of integral and half-integral quanta, 
of discontinuities and of arbitrary use of the classical theory," in short, all 
that had been dear to Heisenberg from the beginning of his studies in 
atomic theory, was not decent physical theory, and he urgently desired that 
the young quantum physicists "soon become used to rigorous physical 
thinking again. ''(453) 

No, Heisenberg defintely had no chance of making any point during 
that discussion in July 1926. On the other hand, as he recalled later, he was 
not alone and isolated in Munich. At least Sommerfeld shared his main 
conclusions, as he wrote in a letter to Wolfgang Pauli shortly after the 
event: "We have had Schr6dinger here, together with Heisenberg. My 
general impression is this, although "wave mechanics" is an admirable 
micromechanics, the fundamental quantum riddles, however, are not 
solved by it in the least. For the time being I don't believe Schr6dinger 
anymore, from the instant where he starts to calculate with the ck (the 
amplitudes of the different simultaneous eigenvibrations). ''(463) It seems that 
either Sommerfeld did not elaborate on this point in the discussion of 
Schr6dinger's talk in Munich, or Heisenberg did not remember; however, 
he did recall that he wrote a sad ("traurigen") letter to Niels Bohr, 
upon which "Bohr invited Schr6dinger to Copenhagen for discussions in 
September of the same year. "(462) 
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17.4. The Relativistic and Magnetic Field Equation 

When Erwin Schr6dinger embarked upon the undulatory treatment of 
the hydrogen atom in November 1925, he aimed at a complete relativistic 
theory. Indeed, the first wave equation that he wrote (in the three-page 
manuscript on "H-Atom. Eigenschwingungen") was a relativistic wave 
equation, namely, 

AO 4rc2v24/u- "-;~ 1 1 ~  4rc2 2 41-[ hv e----~-2 ) 2 1 ] ~  (202) 

It was not only disagreement between the energy states calculated from this 
equation and the experimentally obtained hydrogen terms that forced 
Schr6dinger to restrict his initial publications to the nonrelativistic 
approximation. Nevertheless, the unpublished manuscripts, as well as 
occasional hints in published papers, amply demonstrate how incessantly 
Schr6dinger thought about the relativistic extension of the atomic wave 
equation in the following months. 

Schr6dinger ultimately presented the relativistic wave equation by 
translating directly the classical Hamilton-Jacobi partial differential 
equation for an electron (charge e and mass m), namely, 

lOW e~ ~ lOW eA ~2 

A )2 m2c2 - \  c =0 

OW e Ay) 2 

(203) 

according to the rules of time-dependent theory. In Eq. (203), V and 
A x, A;, A z denote the electromagnetic potentials at the position of the 
electron and W the (characteristic) action function. Upon squaring the 
expressions on the left-hand side and making the replacements 

OW h 0 OW h 0 
6t ~ ++ ~i~i dt' Ox ~ ++--2-~i Ox 

OW h 0 OW h 

one obtains the wave equations (A = (A x, Ay, Az)) 

1 a2~ 4rcie/V~9 ) 
z~lCt C2 ~t 2 g-'~-c ~c ' -~ '+  A grad 0 

4~2C2 / 2 2 m2c4~ 
+ -~-~c2 ~ V -- A x -  A 2 -  A ~ -~ } ~P =0  

(204) 

(205) 
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Schr6dinger concluded: "The pair of equations [(205)] would be the 
possible relativistic-magnetic generalization [of the time-dependent non- 
relativistic equations] for the single electron, and should be likewise 
understood to mean that the complex wave function has to satisfy either 
the one or the other equation. ''(464~ The introduction of the complex wave 
function enabled one to write, as in the nonrelativistic case, a second-order 
wave equation. Evidently, the purely relativistic fine structure should result 
by putting the electromagnetic potentials in Eq. (205) equal to zero. 

The wave equation thus essentially completed, at least for the one- 
electron problem, Schr6dinger's program of an undulatory description of 
the atoms. By the time it appeared in print (in a September issue of the 
Annalen der Physik), however, several other authors had independently 
arrived at the same generalization of the wave equation. Thus the 
relativistic equation (205)--or its special case with zero potentials--would 
later be associated with different names, notably those of Oskar Klein and 
Walter Gordon, but occasionally also with others. In order to understand 
the reason for this custom, we shall give here a condensed review of how 
the various physicists proceeded and what explicit results they found. It 
must be emphasized strongly, however, that all of them were motivated by 
Schr6dinger's first publications on wave mechanics. 

The purest form of the Klein-Gordon equation occurred first perhaps 
in a letter by Wolfgang Pauli, the same one which he had written to 
Pascual Jordan on the equivalence of Schr6dinger's undulatory methods 
with those of matrix mechanics. Thus he introduced the expressions for the 
momentum p and the energy E of a relativistic particle of mass m into what 
he called the "wave equation of de Broglie's radiation field," i.e., the time- 
dependent wave equation, where u = E/p. Thus there followed immediately 
the wave equation 

1 632~ m2c2 c~2~ = 0 (206) 
3if/ g2 ~t  2 k E 2 63t 2 

Pauli also wrote in his letter the equation of a particle in a potential, that 
is, essentially Schr6dinger's later Eq. (205) .  (465) 

As far as the date of publication is concerned, Oskar Klein was the 
first to concern himself with the relativistic wave equation. Since the early 
1920s Klein had been a member of the inner circle around Bohr and had 
already contributed several important results to atomic theory. In his paper 
on "Quantum Theory and Five-Dimensional Relativity Theory," which 
Klein submitted in late April t926 to Zeitschriftfiir Physik, (466) he claimed 
to have found "a simple relationship between the theory proposed by 
[Theodor] Kaluza {467) for the connection between electromagnetism and 
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gravitation, on the one hand, and the method given by [Louis] de 
Broglie (218t and [Erwin] Schr6dinger (244,256) for treating quantum 
problems, on the other hand. ''(468) Klein considered the following differen- 
tial equation in five-dimensional space, 

~aik( 02U ~r[ikl OU) 
• \ax-~x k r ~ = 0  (207) 

involving the (five-dimensional) three-index symbols--a generalization of 
the symbols in general relativity theory, with the metric tensor 7ik replacing 
gi~--and a symmetric tensor a ik whose components depended on the coor- 
dinates. Further, he considered this equation as a wave equation in the 
sense of de Broglie and Schr6dinger. From the fundamental equation (207), 
Klein derived--in the special case of retaining only the electrostatic field 
(i.e., 451 =452=453=0, where 451 =A~, 452= A,, 453 =Az, - (~)q54= Vare 
the components of the electric four-vector)--the second-order wave 
equation 

1 ~2U 2eV ~2U ( e2V2\ ~2U 
AU c20t 2 c20tOxO+ mZc 2- c2 ) 0 - ~ = 0  (208) 

Since, for an electron, U may be written as 

x 0 
U=exp[-27ci(-ff--vt)]O(x, y,z ) (209) 

Eq. (208) reduces to the original Schr6dinger equation (469) 

A ' 4n2 
e +C--~ [(hv - eV) 2 -  m2c 4] • = 0 (2~o) 

The next publication on the relativistic generalization of the 
Schr6dinger equation came from Leningrad. Vladimir Fock had read 
Schr6dinger's first two communications in Annalen tier Physik, and noticed 
his difficulties in obtaining the correct relativistic extension; he therefore 
tried "to remove some of these difficulties and to derive the wave equation 
in question for the general case of a Lagrange function [describing atomic 
systems] having linear terms. ''(47°) Departing from the time-dependent 
Hamilton-Jacobi equation describing a relativistic system having fdegrees 
of freedom, 

( H qi, + ---~ = 0 (211) 
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Fock obtained--in the case of the Zeeman effect, where a magnetic field H 
acts along the z-direction- the wave equation 

eH / 02@ 

a @  - -- 7c Y - b T g  - 

2"' F F_+ 
r 

02@ 
x Oy gt] 

e2H2 2,] 02@ 
8mc 2 (x2 + Y 7 7  = 0  (212) 

Fock solved Eq. (212) with the help of spherical coordinates for the space 
dependence of the wave function (@ =@l(x, y, z)exp[(2rci/h) Et] and 
obtained the normal Zeeman effect. [In Eq. (212), E is the energy 
parameter, m and e denote the mass and absolute charge of the electron, 
and c is the velocity of light in vacuo.] 

Several weeks later, in late July 1926, Fock submitted another paper 
on the subject, entitled "On the Invariant Form of the Wave Equation and 
the Equations of Motion of a Charged Mass Point," to the Zeitschrift fiir 
Physik. (471) In this paper, Fock presented, first, the explicit form of the 
relativistic equation for a charged particle, his result agreeing with 
Schr6dinger's result in Eq. (205); second, he developed a five-dimensional 
generalization of that wave equation, which had a structure similar to 
Klein's Eq. (207). 

While Fock first searched directly for an extension of Schr6dinger's 
wave equation in special relativity, Th6ophile De Donder, with Frans 
Henri van den Dungen, in Brussels, proposed a further approach within 
the scheme of general relativity. (47z) In particular, they found that the 
gravitational interaction in general relativity might be described by an 
integral equation of the Fredholm type (in a generalized space due to the 
number of degrees of freedom of the system of particles considered), whose 
solution seemed to imply a periodic phenomenon that exhibited similarity 
to the undulatory behavior of microscopic particles in Schr6dinger's wave 
mechanics. Later, De Donder carried this idea further in order to derive the 
quantum-theoretical behavior of an electron moving simultaneously in 
gravitational and electromagnetic fields/473) He obtained a complicated 
wave equation whose nongravitational part coincided perfectly with 
Schr6dinger's Eq. (205). 

Equation (205) had, however, already appeared in an earlier issue of 
the Comptes Rendus of the Paris Academy of Sciences. It did so in a note 
entitled "Remarks on the New Undulatory Mechanics," which was presen- 
ted at the meeting of the Academy on July 26, 1926; its author was Louis 
de Broglie, who considered the nonrelativistic wave equations of 
Schr6dinger's previous communications--the fourth communication was 
not yet available in print--to be unsatisfactory. (474) 
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The Hungarian Janos Kudar from the University of Szeged also 
derived Eq. (205). (475) Walter Gordon in Berlin, in his paper on "The 
Compton Effect According to Schr6dinger's Theory, ''(476/ which was 
received by Zeitschrift fi~r Physik on September 29, 1926, presented a 
straightforward procedure for obtaining the relativistic wave equation for a 
massive, charged, microscopic particle moving in external electric and 
magnetic fields. Gordon did not refer to Schr6dinger's fourth communi- 
cation, which came out in print at just about the time when he finished his 
work and which contained parts of his results. Gordon departed from the 
classical equation for a relativistic charged particle (electron) with four- 
momentum p~ (c~ = 1, 2, 3, 4) in an electromagnetic field describe by the 
four-potential c/, (~ = t, 2, 3, 4), i.e., ( )2 

e ~  +m2c2=  0 (213) P~-c 

By replacing energy and momentum variables by operators according to 
Schr6dinger's rules (Pk ~ (h/2~i)(D/Oxk) and E ~ -(h/21ri)(~/Ot)), Gordon 
obtained the wave equation 

h ~ e cf)o~ -}- m2c 2 ~/= 0 (214) 
i Ox~, c 

After the procedure of squaring is carried out, the equation becomes 

~02~p 4~zi~ ~ 8~ 

) h2 ~ qsZ~+m2c2 ~ = 0  (215) 

which coincides completely with Eq. (205)--with the upper sign--if 
one takes into account the strictly relativistic notation in Eq. (215); in 
particular, we have ~1 =A~, q52 =Ay, 4 3 =A~, and ~754=iV. The work of 
Walter Gordon thus provided the most condensed mathematical presen- 
tation of the various versions of Schr6dinger's equation, especially of the 
fully relativistic form; even though he was nearly the last to publish the 
results, this fact justifies the association of his name with Eq. (215) or its 
special case in the absence of electromagnetic potentials. Finally, Gordon 
did not stop at the relativistic wave equation, but went on to use it in a 
crucial problem: to calculate the Compton effect in wave mechanics. Oskar 
Klein--who, besides Schr6dinger, first worked on the relativistic wave 
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equation--and Walter Gordon are indeed the appropriate patrons of the 
equation that bears their names; this does not in any way minimize the fine 
contributions of Pauli, de Broglie, Fock, De Donder, and Kudar. (477) 

17.5. Schr6dinger's Visit to Copenhagen 

From the very beginning, Heisenberg had been seriously opposed to 
Schr6dinger's "anschauliche" interpretation of wave mechanics. Thus, for 
instance, he had written to Wolfgang Pauti in June: "The more I ponder on 
the physical part of Schr6dinger's theory, the more detestable I find it. One 
should imagine the rotating electron, whose charge is distributed over the 
entire space and which has an axis in a fourth and fifth dimension. What 
Schr6dinger writes on the visualizability of his theory ... I find rubbish. The 
great achievement of Schr6dinger's theory is the calculation of matrix 
elements. ''(478) Schr6dinger's colloquium in Munich had merely confirmed 
Heisenberg's negative opinion. A few days after the colloquium, he wrote to 
Pauli: "As nice as Schr6dinger is personally, I find his physics so strange: 
one feels 26 years younger when listening to it. Indeed, Schr6dinger throws 
overboard everything which is 'quantum-theoretical': namely, the 
photoelectric effect, the Franck[-Hertz] collisions, the Stern-Gerlach 
effect, etc. It is not then difficult to establish a theory [of the kind 
Schr6dinger has in mind]. However, it does not agree with experience. ''~479) 
But the unfortunate discussion following Schr6dinger's Munich lecture 
persuaded Heisenberg of the necessity of having a really detailed and 
penetrating discussion with Erwin Schr6dinger elsewhere, most profitably 
in Copenhagen where Niels Bohr especially could participate. 

In a letter dated September 11, 1926, Bohr actually invited 
Schr6dinger to come to Copenhagen and deliver a lecture to the Danish 
Physical Society (Fysisk Forening) on wave mechanics. At the same time 
Bohr expressed the hope "that you will introduce some discussions for the 
narrower circle of those who work here at the Institute, and in which we 
can deal more deeply with the open questions of atomic theory. ''(48°'481) 
Among this narrower circle belonged, in particular, Werner Heisen- 
berg--from May, 1926 the main "Assistent" and "Lektor" at the 
Copenhagen Institute for Theoretical Physics--and Oskar Klein; Paul 
Dirac was also present at Bohr's Institute at that time. Schr6dinger accep- 
ted Bohr's invitation quite readily, (482) and announced his arrival in 
Copenhagen on October 1. ~483) There he was received with great eagerness; 
thus Heisenberg recalled: "Bohr's discussions with Schr6dinger began at 
the railway station and were continued daily from early morning until late 
at night. Schr6dinger stayed at Bohr's house so that nothing would 
interrupt the conversations. ''(484) 
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No contemporary notes about the content of the Copenhagen dis- 
cussions exist; it does not seem to have occurred to anyone--neither Bohr, 
nor Schr6dinger, nor any of the other participants--to keep such notes. 
However, Heisenberg later gave many lively accounts of the 
discussions. (485) As Heisenberg recalled, in Copenhagen Schr6dinger 
especially attacked the idea of sudden quantum jumps. Schr6dinger 
believed that the idea of quantum jumps was bound to end in nonsense. He 
reminded Bohr that "according to his (Bohr's) theory, if an atom is in a 
stationary state, the atom revolves periodically but does not emit light, 
when, according to Maxwelt's theory, it must. Next the electron is said to 
jump from one orbit to the next and to emit radiation. Is this jump sup- 
posed to be gradual or sudden? If it is gradual, the orbital frequency and 
energy of the electron must change gradually as well. But in that case, how 
do you explain the persistence of fine spectral lines? On the other hand, if 
the jump is sudden, Einstein's idea of light quanta will admittedly lead us 
to the right wave number, but then we must ask ourselves how precisely 
the electron behaves during the jump. Why does it not emit a continuous 
spectrum, as electromagnetic theory demands? And what laws govern its 
motion during the jump? In other words, the whole idea of quantum jumps 
is sheer fantasy. ''(484) 

Bohr agreed with Schr6dinger's objections, but pointed out that they 
did not prove that there are no quantum jumps; only we cannot imagine 
them and the concepts with which we describe events in daily life and 
experiments in classical physics are inadequate when it comes to describing 
quantum jumps. "Nor should we be surprised to find it so," Bohr said, 
"seeing that the processes involved are not the objects of direct 
experience. ''~484~ Schr6dinger countered by saying that "if there are elec- 
trons in the atom, and if these are particles--as all of us believe--then they 
must surely move in some way. Right now I am not concerned with a 
precise description of this motion, but it ought to be possible to determine 
the principle of how they behave in the stationary state or during the trans- 
ition from one state to the next. But from the mathematical form of wave 
or quantum mechanics alone, it is clear that we cannot expect reasonable 
answers to these questions. The moment, however, that we change the 
picture and say that there are no discrete electrons, only electron waves or 
waves of matter, then everything looks quite different. We no longer 
wonder about the fine lines. The emission of light is as easily explained 
as the transmission of radio waves through the aerial of the transmitter, 
and what seemed to be insoluble contradictions have suddenly 
disappeared. ''(484~ Bohr disagreed with this and pointed out that the 
contradictions did not disappear: "You speak of the emission of light by 
the atom or more generally of the interaction between the atom and the 
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surrounding radiation field, and you think that all the problems are solved 
once we assume that there are material waves but no quantum jumps. But 
just take the case of thermodynamic equilibrium between the atom and the 
radiation field--remember, for instance, the Einsteinian derivation of 
Planck's radiation law. The derivation demands that the energy of the 
atom should assume discrete values and change discontinuously from time 
to time; discrete values for the frequencies cannot help us here. You 
can't seriously be trying to cast doubt on the whole basis of quantum 
theory."(484) 

Schr6dinger conceded that all these relationships had not yet been 
fully explained, but pointed out that Bohr and his associates had also so far 
failed to discover a satisfactory physical interpretation of quantum 
mechanics. Bohr agreed that there were inconsistencies, as for example 
when one watched sudden flashes of light on a scintillation screen or the 
sudden rush of an electron through a cloud chamber; one could not just 
ignore these observations as if they did not exist at all. 

On Bohr's defense of the concept of quantum jumps as being essential 
in describing the behavior of atoms and radiation, Schr6dinger became 
quite despondent, and finally exclaimed: "If all this quantum jumping were 
here to stay, I should be sorry I ever got involved with quantum theory." 
To which Bohr replied: "But the rest of us are extremely grateful that you 
did; your wave mechanics has contributed so much to the mathematical 
clarity and simplicity that it represents a gigantic advance over all previous 
mechanics."( 484~ 

Heisenberg also recalled that the continuous, strenuous discussions 
and conversations with Bohr exhausted Schr6dinger. "After a few days 
Schr6dinger fell ill, perhaps as a result of his enormous effort; in any case, 
he was forced to keep to his bed with a feverish cold. While Mrs. Bohr 
nursed him and brought in tea and cake, Niels Bohr sitting on the edge of 
the bed talking to Schr6dinger: 'But you must surely admit that....' ,,(484~ In 
other words Bohr--whom Heisenberg described as having been "an almost 
remorseless fanatic ''(+84> in the debate with Schr6dinger--still had to 
convince his miserable guest to accept the Copenhagen position. However, 
"no real understanding could be expected since, at that time, neither side 
was able to offer a complete and coherent interpretation of quantum 
mechanics. For all that, we in Copenhagen felt convinced toward he end of 
Schr6dinger's visit that we were on the right track, though we fully realized 
how difficult it would be to convince even leading physicists that they must 
abandon all attempts to construct perceptual models of atomic 
processes."(484) 

Schr6dinger, who delivered his lecture entitled "Grundlagen der 
undulatorischen Mechanik" ("Foundations of an Undulatory Mechanics") 
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before the Danish Physical Society on October4, 1926, stayed in 
Copenhagen only a few days. A couple of weeks later he reported to 
Wilhelm Wien: "...it was very nice that I was able to become thoroughly 
acquainted with Bohr--whom I had never known before--in his own 
surroundings, and to talk with him for hours about these matters which are 
so very dear to all of us. ''(486) In his letter to Wien, Schr6dinger briefly 
sketched the contents of discussions in Copenhagen, especially the points of 
disagreement. He wrote: "Quite certainly, the point of view of [using] 
visualizable pictures, which de Broglie and I assume, has not been carried 
through nearly far enough in order to render an account of the most 
important facts [of atomic theory]. It is of course probable that here and 
there a wrong path was taken that must now be abandoned. But that, even 
if one is Niels Bohr, one could possibly say at this point: the visualizable 
wave pictures work as little as the visualizable point [-particle] models, 
there being something in the results of observation which cannot be 
grasped by our erstwhile way of thinking; this I do not believe. I believe it 
even less since for me the comprehensibility of the external processes in 
nature is an axiom, say, in the sense: to grasp experience means nothing 
more than establishing the best possible organization among the different 
facts of experience. ''(486) In Schr6dinger's opinion, the facts of experience 
could not contradict each other, as Bohr--for many years--had tended to 
assume in atomic physics; only the "theoretical connections" ("gedankliche 
Verbindungsglieder') or the physical interpretations could do so. In par- 
ticular, it seemed "premature" ("voreilig") to give the "completely general 
conceptions of space and time and the connection of the interaction of 
neighboring space-time points," concepts that had been preserved even in 
general relativity theory. (486) 

Schr6dinger further remarked to Wien: "I can only say that I don't 
care at all for this whole play of waves, if it should turn out to be nothing 
more than a comfortable computational device to evaluate matrix elements. 
In spite of all these theoretical points of dispute, however, the relationship 
with Bohr, and especially Heisenberg, both of whom behaved toward me in 
a touchingly kind, nice, caring, and attentive manner, was totally, 
cloudlessly amiable and cordial. ''(486) 

The reports from Copenhagen on the results of the discussions with 
Schr6dinger sounded a little different. For example, Niels Bohr wrote to 
Ralph Fowler on October 26, 1926: "...The discussions gradually centered 
themselves on the problems of physical reality of the postulates of atomic 
theory. We all agreed that a continuity theory [such as Schr6dinger's] 
leads to expectations fundamentally different from those of the usual dis- 
continuity theory [of Born, Heisenberg, Jordan, and Dirac]. Schr6dinger 
himself continued in the hope that the idea of stationary states and 
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transitions was altogether avoidable, but I think we succeeded at least in 
convincing him that for the fulfillment of his hope he must be prepared to 
pay a cost, as regards reformation of fundamental concepts, formidable in 
comparison with that hitherto contemplated by the supporters of the idea 
of a continuity theory of atomic phenomena. ''(487) Schr/Sdinger obviously 
believed that matrix mechanics implied that single stationary states 
possessed no physical reality, a point of view which Bohr found to be "a 
confounding of the means and aims of Heisenberg's theory. ''(487) On the 
other hand, Bohr considered wave mechanics "so wonderfully suited to 
bring out the true correspondence between the quantum theory and the 
classical ideas. "(487) This correspondence was explored by Bohr and his 
collaborators in the months following Schrrdinger's visit to Copenhagen 
and helped enormously in establishing the physical interpretation of quan- 
tum mechanics. The efforts of the Copenhagen physicists on the physical 
interpretation of quantum mechanics led, in particular, to Heisenberg's 
uncertainty relations and to Bohr's complementarity view--which became 
the central parts of the so-called Copenhagen interpretation of quantum 
mechanics. 

17.6. The Compton Effect and the Photoelectric Effect 

In Section 1 of his paper on the Compton effect, Walter Gordon began 
by establishing a suitable relativistic wave equation, i.e., Eq. (215). (476) In 
the next Section 2, he showed how to use this equation in order to obtain 
the emission of radiation from an atomic system. In order to consider the 
Compton effect (in Section 3), Gordon represented the primary X-radiation 
by a linearized polarized wave with direction cosines nl, n:, and n3 and the 
frequency v. The X-rays then create an external potential 

~ = a~ cos ~ (216) 

with the phase ~ given by 

0 = ~ l~x~, where 

lk=2nVn~ for k = 1 , 2 , 3  
£ 

27z~ 
l 4 = i - -  

C 

(216a) 

These potentials are inserted in Eqs. (215) and yield the wave equation 
describing the Compton effect, i.e., 

00 ) 4~ 2 020 4~i e ~ a  _~x ~ cos~__h_~_m2c2¢= 0 (217) 
~Ox~ h 
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Gordon solved this equation by making the appropriate Ansatz for ~9, and 
determined the frequency of the X-rays shifted by the Compton effect, tn 
particular, he found that the result implied an equation, 

p~ + 7r~ = p'~ + ~'~ (218) 

which stated the energy-momentum conservation for the system consisting 
of the atom (four-momenta p~ and p'~ before and after the impact of the 
X-radiation) and the radiation (four-momenta of the quanta being ~ and 
n'~, respectively), i.e., just as the old relation of Compton and Debye. 
Further, the well-known frequency relation followed. Finally, Gordon 
calculated the intensity I of the Compton radiation, obtaining the result 

t =  ,~I/-~. I'c, (219) 

that is, the quantum-theoretical intensity was equal to the geometrical 
average of the corresponding classical quantities in the initial (Ic~) and the 
final (I~l) states. The same result had already been obtained earlier by 
Gregory Breit on the basis of correspondence considerations (488) and by 
Paul Dirac in his relativistic q-number theory. (43°) 

Schr6dinger himself approached the wave mechanical treatment of the 
Compton effect on a far tess technical level. (489) In pursuing his attempted 
goal of an intuitive treatment, Schr6dinger recalled one of his earlier 
papers, in which he had investigated the reflection of light waves (of 
wavelength 2) from a compression, i.e., a sound wave (of wavelength A); 
he had then shown that the famous Bragg relation of the classical theory, 
i.e., the law accounting for the reflection of first-order X-rays from a lattice 
with lattice constant A, 

2A sin 0 = Z (220) 

could be taken over into quantum theory, provided he applied the light- 
quantum hypothesis to both radiation and sound phenomena. (49°~ The 
situation in Compton scattering resembled the old light-sound scattering; 
hence the question arose as to whether an equation of the type of Eq. (220) 
would also follow from a wave mechanical calculation, and further, if so, 
whether then the known shift of X-rays when scattered by electrons bound 
in atoms would result. 

Schr6dinger proceeded in the most simple manner. He first wrote the 
wave equation determining the propagation of a free electron in space, i.e., 

1 O~ , 4 @  2q)=0 (221) 
~ 4 ' - ~  ~t 2 c 2 

825/18/2-5 
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This wave equation possessed, as the simplest solution, a plane wave, 

1} 0 (~x + BY + ~z) (222) 
c 

where e, /~, 7 denoted direction cosines (~2 +/~a + yz = 1), hv the energy of 
the moving electron, and hvo (=mc 2) the energy of the electron at rest. 
According to Schr6dinger's discussion in the fourth communication, a 
0-wave of the type (222) creates a density distribution which is constant in 
time. If, however, one superposes two such plane waves--the second one 
having frequency v' and direction cosines c~', /~', 7'~--a "wave of electrical 
density ''(491) is created which has a structure similar to the sound wave 
considered by Schr6dinger earlier. (49°) The reflection of a light wave then 
indeed followed Bragg's law, Eq. (220). One of the immediate consequences 
was that the energy-momentum four-vectors of the incident and scattered 
radiation and the corresponding four-vectors of the electron (which is 
initially bound in the atom and finally leaves it as a free electron) satisfy 
the Compton-Debye relation, Eq. (218). 

A little earlier, before Schr6dinger's investigation of the Compton 
effect was completed, Gregor Wentzel from Leipzig submitted a paper "On 
the Theory of the Photoelectric Effect" to Zeitschrift fiir Physik, where it 
was received on November 19, 1926. (491) In this paper, Wentzel opened the 
path for dealing with the photoelectric effect in wave mechanics. In a 
second short note, Wentzel completed his treatment of the photoelectric 
effect in wave mechanics, and included in his calculation the influence of 
the magnetic field of the incident radiation. ~492) 

17.7. Further Successes of Wave Mechanics in the Second Half of 1926 

From the middle of the year 1926 onwards, wave mechanics occupied 
an increasing importance in the physical literature on atomic theory. The 
number of theoretical physicists using Schr6dinger's methods in order to 
treat a variety of old and new problems grew considerably. Among the 
contributors to the applications of wave mechanics were physicists, who 
had for years made a name for themselves in atomic and quantum theory-- 
like Peter Debye, Hendrik Kramers, Ralph Kronig, and Fritz Reiche--as 
well as newcomers like the Dane Oyvind Burrau, the Belgian Charles 
Manneback, and the Americans J. Robert Oppenheimer and Isidor I. Rabi. 
The fact that the youngsters also demonstrated their ability to master 
Schr6dinger's methods, so soon after their publication, provided a signal 
for what later became the triumphant march of wave mechanics. 

In a short communication, entitled "Quantum Theory of the Con- 
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tinuous Absorption Spectrum" and published in the Naturwissenschaften 
issue of December 24, 1926, (493) Oppenheimer drew attention to his recent 
work on applying undulatory mechanics "to the hyperbolic orbits of the 
hydrogen atom" that had been published recently. (494) He wrote: "The for- 
mulas [obtained] ... provide an estimate of the intensity of the continuous 
X-ray absorption spectrum. This [estimate] i s I  believe--the first 
experimental check of these parts of the [undulatory] theory. "(493) 
According to the results obtained by Oppenheimer, the absorption of the 
X-rays begins--the atomic electron being in an orbit described by the 
quantum numbers n (principal) and k (azimuthat)--at the limit of the 
corresponding series, assuming there a value proportional to the 
wavelength of the series limit. Further, for very hard (short-wavelength) 
X-rays, the absorption coefficient is proportional to the product of a 
certain power of the wavelength and another power of the effective charge 
of the atomic nucleus; the calculated numerical values for these power 
coefficients agreed with the corresponding values derived from the 
empirical formulas. 

Oppenheimer completed the work on his doctoral dissertation under 
Max Born a few months after his arrival in G6ttingen in the fall of 1926. 
An abridged version of this thesis, entitled "On the Quantum Theory of 
Continuous Spectra," was published in Zeitschrift fiir Physik early in 
1927. (495) Oppenheimer organized the material of this thesis in three parts. 
1. General Theory; 2. Application to the Two-Body Problem; 3. Physical 
Results. In Part 1, he displayed the solution of the (time-independent) 
Schr6dinger equation of a general atomic system which possesses a discrete 
and continuous energy spectrum. In part 2, Oppenheimer applied the 
general theory to the class of atoms consisting of a heavy nucleus of mass 
M and electric charge Ze, which attracts an electron with a distorted 
(Coulomb) potential 

Ze 2 b 
V= r2 (223) ?. 

where b denotes a small constant. He solved the wave equation of this 
system in the standard manner. In Part 3, Oppenheimer applied his results 
to the simplest case of the hydrogen atom, where the second term--with 
b = ( ~ - i n  Eq. (223) drops out. Thus, he calculated the properties of the 
continuous absorption spectra which join the discrete series spectra of 
atomic hydrogen on the short wavelength side. In particular, he found an 
explicit formula for the coefficient of absorption c~, expressed as a function 
of the wavelength 2 of the absorbed radiation. Oppenheimer also used his 
theory to deal with two other physical problems: namely, the photoelectric 
effect and Bremsstrahlung. 
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The Belgian Charles Manneback, then working with Peter Debye at 
the E.T.H. in Zurich, completed a paper on July 17, 1926 on "The Dielec- 
tric Constant of Diatomic Dipole Gases According to Wave Mechanics" 
and submitted it to Physikalische Zeitschrift. (496) This problem was a rather 
fashionable one in those days, besides being of considerable interest for 
Manneback's host Debye. For instance, Lucy Mensing and Wolfgang Pauli 
had very recently---in June 1926--obtained a result with the help of matrix 
mechanical methods which appeared to be more satisfactory than the result 
based on the old quantum theory, insofar as it passed over into the 
classical solution of Debye (17) in the limit of high temperatures, (497) 
Manneback formulated and solved the problem in the context of wave 
mechanics, and concluded: "One arrives, in Schr6dinger's mechanics, at 
exactly the same results as in the mechanics of Heisenberg and Born: the 
dielectric constant of an ideal diatomic gas composed of rigid molecules ... 
approaches the value given by the theory of Langevin and Debye at high 
temperatures." (498) 

A little more than a month after Manneback had submitted his paper 
on the rigid diatomic molecule, Fritz Reiche from Breslau sent a paper, 
entitled "The Quantization of the Symmetrical Top According to 
Schr6dinger's Undulatory Mechanics," to Zeitschrift fiir Physik. (499) The 
symmetrical top represented a generalization of the rigid rotator that had 
been solved by Schr6dinger in his second communication and had played a 
role in Manneback's work: instead of one moment of inertia, it possessed 
three such moments, A, B, and C, two of which were identical, i.e., A = B. 
Reiche established the wave equation for his problem in the standard way, 
which was given by Schr6dinger in his paper on the equivalence of the two 
theories. (5°°) In the case of the free symmetrical top, Reiche obtained the 
discrete energy values 

where , assumed positive and negative integral values, and j positive 
integral values larger than or equal to the absolute value of z. In the case of 
a symmetrical top--with whose axis an electric dipole moment was 
connected--Reiche investigated the motion in an external homogeneous 
electric field of strength F parallel to the z-axis (so that the potential energy 
V=~Fcos  0), and obtained the additional energy term 

(~E(I) = _#F  t*[" Iz'l 
j(j¥ii (225) 
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where ~, z', and j assume integral values such that 

0~<lz]~<j and 0~<]z'l~<j (225a) 

and # is the electric moment of the permanent dipole (associated with each 
molecule) and 0 the angle between the axis of the dipole moment and the 
vector of the electric field. 

As a special application of his result, Eq. (224), Reiche tried to explain 
the problem of the rotational heats of hydrogen. In a second paper, bearing 
the same title and submitted in late November 1926 (again to Zeitschrift  
fiir Physik),  Reiche and Rademacher studied the problem of intensities of 
radiation that can be emitted by a symmetrical top. (s°l) For that purpose, 
they calculated the matrices of the electric moment of the system in a coor- 
dinate system fixed in space and found, after detailed calculations, results 
which agreed with those obtained in the spring of 1926 by David 
M. Dennison. (5°2) They further noticed that their intensity formulas derived 
for a spinning top in the presence of a weak perturbing electric field agreed 
fully with those of Lucy Mensing, in the special case which the latter had 
evaluated by using matrix methods. (38°) 

In November 1926, Ralph de Laer Kronig and Isidor I. Rabi from 
Columbia University, New York, also submitted their paper on "The Sym- 
metrical Top in the Undulatory Mechanics" to the Physical Review. (5°3) 
Their approach fully agreed with that of Reiche and Rademacher. Kronig 
and Rabi noticed the identity of their result [Eq. (224), same as Reiche's] 
with Dennison's, and further calculated explicitly the matrix elements for 
the z-component of the transition amplitude. The results were again 
identical with those obtained by matrix methods. The American authors 
performed their calculations completely on their own, unaware of the 
European competition. 

In a further paper on "Dielectric Constant and Stark Effect of 
Polyatomic Dipole Gases with Symmetrical Molecules According to Wave 
mechanics, ''(5°4) Manneback explicitly displayed the establishment of the 
wave equation of the symmetrical top and obtained the energy eigenvalues, 
Eq. (224), in the case of zero potential, as well as the corrections due to a 
perturbing electric field. In the rotation-free case, j = 0, the correction 6E (1), 
Eq. (225), disappears, and Manneback computed the quadratic correction 
to be 

1 (/~r) 2 (226) 
6E~2) - 6 (h2/8~2A) 

Manneback's wave mechanical treatment of the symmetrical top was 
independent of that of Kronig and Rabi. Hence, all three wave mechanical 
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treatments of the symmetrical top--those of Reiche, Kronig and Rabi, and 
Manneback--were arrived at independently. They confirmed the results 
obtained earlier on the basis of matrix mechanics. 

Another application of wave mechanical methods, however, probed 
entirely new ground. In the summer of 1926, Waldemar Alexandrow in 
Zurich undertook to solve the problem of the hydrogen molecule-ion in the 
framework of wave mechanics, a problem which Wolfgang Pauli (5°5) and 
K.F.  Niessen (s°6) had worked on in their respective doctoral theses 
according to the Bohr-Sommerfetd theory. In a letter, dated June 11, 1926, 
Pauli reported to Wentzel: "In Copenhagen, there is a gentleman who 
occupies himself with the calculation of H I  [hydrogen molecule-ion], 
according to Schr6dinger['s wave mechanics]." It took the gentleman in 
question, lOyvind Burrau, some time to handle the problem. 

Alexandrow started from Schr6dinger's fundamental equation and, 
after introducing elliptical coordinates, made use of the Ansatz for the 
separation of variables for the wave function, obtaining solutions for the 
resulting second-order equations. For the ionization potential of the 
hydrogen atom, he obtained the value of 13.5 volts, which seemed to be in 
agreement with observation--notably that of the ionization potential of the 
hydrogen molecule. 

After a close scrutiny of Alexandrow's paper, Heisenberg wrote to 
Pauli: "The work of Alexandrow... [is] naturally totally wrong. ''(s°v) He 
reported further: "Here [Friedrich] Hund has ceded the H~- to 
Mr. Burrau, and the latter has now really straightened out the problem 
finally .... Burrau obtains, as one should, solutions whose Schr6dinger 
functions don't have any zeros; he computes the energy as a function of the 
distance of the nuclei and connects [the energy], on the one hand, to [that 
of the] He~ state, and, on the other hand, to that of the H1, state. By the 
way, the 0-function is symmetrical with respect to the nuclei. If one adds 
[the potential energy of] the repulsion to the energy, then one gets a nice 
minimum [of the energy] at [a distance of the nuclei] r ~ 3all (that is, 
about half the distance that you found at that time); and the energy is 15.7 
volts, which is accurate enough in any case. About this [problem], one can 
therefore calm down. ''(s°7) 

Burrau's paper on the "Calculation of the Energy Value of the 
Hydrogen Molecule-Ion ( H I )  in the Ground State" was ready for 
publication, after much delay, on March 19, t927. (508) Burrau's work, apart 
from minor later improvements, finished the problem. The ground state 
energy of the hydrogen molecule-ion, corrected slightly by taking into 
account the zero-point energy ½by of the oscillations of the nulcei, was 
finally found to be 

- Eto t = 16.22 volts (227) 
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17.8. Schr/~dinger's Rising Fame: Visit to America and 
Call to Berlin Professorship 

Although the final success of the hydrogen molecule-ion calculation 
--the second crucial test of a complicated calculation of atomic energy 
states after Heisenberg's solution of the helium problem--had not been 
fully secured by late 1926, the experts were confident enough at that time 
that more or tess all the problems of atomic structure could be handled by 
means of wave mechanical methods. This situation must certainly have 
pleased Schr6dinger, as much as it excited and astonished the community 
of physicists. It did not mean, however, that no questions remained to be 
answered in the theory, and Schr6dinger himself was the first person to be 
aware of the unresolved difficulties. Especially, he was deeply concerned 
about the fundamental problems connected with the interpretation of the 
wave function and the relation between the wave mechanical quantities and 
those of (classical) electrodynamics. 

During the last few months of 1926 Schr6dinger was hindered from 
continuing to consider the problem of interpretation in detail due to the 
preparations for his extended visit to America. In the United States, wave 
mechanics had increasingly attracted the attention of physicists from the 
West to the East Coast. The principal invitation to Schr6dinger came from 
Charles E. Mendenhall to deliver an extended series of lectures at the 
University of Wisconsin in Madison. Schr6dinger finished his lecturing 
duties at the University of Zurich and left the city on December 18, 1926, 
together with his wife, travelling via Basel and Paris to Le Havre, from 
where he sailed on the French liner De Grasse for New York. In New 
York, Karl Herzfeld and Friedrich Paneth, two old acquaintances from 
Vienna, welcomed the Schr6dingers, and helped them through customs and 
in finding accommodations. After an extended stay in New York, they 
travelled westwards and arrived on January 2 in Madison, where 
Schr6dinger assumed his duties. During his stay there, a meeting on quan- 
tum theory was held at the University of Wisconsin (on January 22, 1927); 
this provided Schr6dinger the opportunity to meet several American 
physicists active in this field: for example, the experimentalist George Eric 
MacDonnell Jauncey--the X-ray and Compton scattering specialist from 
St. Louis--and the young theoreticians John H. Van Vleck (from 
Minneapolis) and Frank C. Hoyt (from Chicago). 

Schr6dinger's presence in America was not restricted to Madison, 
Wisconsin. He received and accepted invitations at neighboring places like 
Minneapolis and Chicago. On February t0, 1927, when the lecture course 
in Wisconsin was completed, the Schr6dingers travelled further west to 
California, first to Pasadena, where they stayed two weeks. At the Califor- 
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nia Institute of Technology, a series of lectures on wave mechanics had 
been arranged, which Schr6dinger had the pleasure and privilege of 
delivering together with the venerated senior physicist Hendrik Lorentz, 
who had been invited at the same time. (5°9) In these lectures on wave 
mechanics at Caltech, Lorentz took over the parts on the foundations of 
the theory, leaving Schr6dinger free to elaborate on special problems 
and applications. The audience was rather large: about sixty physicists 
participated regularly. Paul Epstein, the theoretician at Caltech, not only 
showed a professional interest in wave mechanics, but also took the visitors 
sightseeing, e.g., to Mount Wilson. 

From California, the Schr6dingers went back to Chicago (March 7, 
1927); Ann Arbor, Michigan; Boston and Cambridge, Massachusetts 
(Harvard University); then Baltimore (March 21), where Schr6dinger met 
the spectroscopists Robert W. Wood and Alfred L. Loomis. Altogether he 
delivered 57 lectures--not all of them on topics of atomic theory--the last 
one at Columbia University, New York, before he returned home. On 
April 10, 1927, Schr6dinger was back in Zurich. 

The American tour was a strenuous enterprise, although Schr6dinger 
enjoyed it more the longer it lasted. It added substantially to his reputation 
as a physicist outside Europe, and even more, it helped to propagate wave 
mechanics. Mendenhall offered him a permanent position at the University 
of Wisconsin, indeed an honorable offer, which, however, Schr6dinger did 
not accept. One of the reasons was that, before he left Europe, Max Planck 
had informed him of a most exciting prospect: the possibility that he 
might be called (berufen) to occupy the chair of theoretical physics at the 
University of Berlin as Planck's successor. 

Arnold Sommerfeld was a prime candidate for the chair of theoretical 
physics at the University of Berlin. Although his negotiations with the 
Prussian Ministry of Education went on for some time, he ultimately 
declined in July 1927. The call then went to Schr6dinger. He spent quite 
some time dealing with the Prussian authorities, and at the same time 
entered into active negotiations with Zurich; he soon realized that the 
authorities at the University of Zurich and the E.T.H. were more interested 
in increasing his duties than in granting him privileges. On September 3, 
1927, he wrote to Wien: "Now the decision has been made. I am certainly 
able to say, now that it has been decided, that I shall really go to Berlin 
with pleasure. Every imaginable courtesy has been granted to me there; I 
could see that people really want to get me, which is indeed always a 
pleasant feeling. ''(51°) In the autumn of 1927, Schr6dinger went to Berlin 
and joined the university as professor of theoretical physics; his closest 
colleagues were Max von Laue and Albert Einstein, who esteemed his 
work highly and had helped in bringing him to Berlin, although the driving 
power had been Max Planck, the man whom he succeeded. 
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Schr6dinger's stay in Berlin from 1927 to 1933 was very happy. As 
Annemarie Schr6dinger recalled: "Berlin [had]  the most wonderful and 
absolutely unique atmosphere for all scientists .... The theatre was at its 
height, the music was at its height, and science with all the scientific 
institutes [-and] industry. And the most famous K o l l o q u i u m  . . . .  It was the 
most famous colloquium I think ever held: Lise Meitner, Einstein, Planck, 
Nernst, Haber, [Gustav]  Hertz, [Peter ]  Pringsheim--a terrific lot [of  
famous] people .... There were lots of friends who came together, not 
[only]  on a special day; it was absolutely a very nice social life. My 
husband liked it very much indeed. ''(511) 

Schr6dinger, the new member of the distinguished circle of physicists, 
arrived in Berlin with a fresh laurel wreath wrapped around his theory. In 
recent months, the results of two independent experiments had been 
published, one carried out by Clinton Joseph Davisson and Lester Halbert 
Germer in America, ~512) the other by George Paget Thomson and Alexan- 
der Reid in Scotland, (513) which proved the wave nature of electrons, i.e., 
the reality of matter waves, the basis of wave mechanics. Schr6dinger was 
very happy about the experimental confirmation of de Broglie's conception 
of matter waves, but his colleagues in Berlin considered wave mechanics as 
the real theoretical fulfillment of the idea of matter waves. They received 
him cordially with all honors, and made him feel like a preferred member 
of their community by electing him (in 1929) as a member of the Prussian 
Academy of Sciences. 

Mrs. Schr6dinger recalled: "When we came to Berlin we thought: 
'Well, we will stay in Berlin for a good while.' We couldn't have thought 
that 'we'd have to leave Berlin. ''(SH) Still, the necessity came in 1933, after 
the German government was taken over by the Nazis. Shocked by the new 
politics in general, and by the dismissal of the Jewish scientists from their 
positions in particular, Schr6dinger resigned voluntarily from his Berlin 
professorship and left Germany to assume a position at Oxford University 
in November 1933. Soon after arriving in Oxford, Erwin Schr6dinger 
received the news that he was to share the Nobel prize in physics for the 
year 1933 with Paul Adrien Maurice Dirac, while Werner Heisenberg was 
awarded the prize for the year 1932. Then a new chapter in Schr6dinger's 
life began. 

R E F E R E N C E S  

3ll. Letter from E. Schr6dinger to A. Sommerfeld, January 23, 1926. 
312. The first indication of the treatment of the linear oscillator can be found in Schr6dinger's 

notebook on "Eigenwertproblem des Atoms. I" on p. 45, after the successful solution of 
the nonrelativistic hydrogen atom and another unsuccessful discussion of the Zeeman 
effect of hydrogen. 



178 Mehra 

313. R. Courant and D. Hilbert, Methoden der mathematischen Physik, Springer-Verlag, 
Berlin (1924). 

314. E. Schr6dinger, Ref. 256, p. 515. 
315. E. Schr6dinger, Ref. 256, p. 518, footnote 1; English translation, p. 33, footnote 1. 
316. R. Courant and D. Hilbert, Ref. 313. 
317. E. Schr6dinger, Ref. 256, p. 516; English translation, p. 31. 
318. Actually, what have been called the Hermitian orthogonal functions are not 

exp(-xZ/2)H,(x),  but the normalized functions (2"n!)-i/2.exp(-x2/2)Hn(x). [See 
Ref. 313, p. 77, Eq. (66).] 

319. These notes, two sheets altogether, have been filed on AHQP Microfilm No. 40, 
Section 7. 

320. E. Schr6dinger, Der stetige ~bergang von der Mikro- zur Makromechanik, 
Naturwissenschaften 14, 664-666 (1926), English translation: The Continuous Transition 
from Micro- to Macromechanics, Ref. 256, pp. 41-44. 

321. E. Schr6dinger, Ref. 320, p. 665; English translation, p. 42. 
322. E. Schr6dinger, Ref. 256, p. 519; English translation, p. 34. 
323. Equation (134) follows from the fact that the square-root factor in the sine or cosine 

must be an integer. 
324. P. Ehrenfest, Bemerkung betreffs der spezifischen Wfirme zweiatomiger Gase, Verh. 

Dtsch. Phys. Ges. 15, 451-457 (1913); reprinted in Collected Scientific Papers, 
pp. 333-339. 

325. E. Schr6dinger, Ref. 256, p. 520; English translation, pp. 34-35. 
326. E. Schr6dinger, Ref, 256, p. 52t; English translation, p. 35. 
327. For details, see Ref. 245, Chapter IV, pp. 596-599. 
328. P. S. Epstein, Zur Theorie des Starkeffekts, Phys. Z. 17, 148-150 (1916); Ann. Phys. 50, 

489-521 (1916). 
329. H. A. Kramers, Intensities of spectral lines: On the Application of the Quantum Theory 

to the Problem of the Relative Intensities of the Components of the Fine Structure and 
of the Stark Effect of These Lines of the Hydrogen Spectra, Kgl. Danske Vid. Selsk. 
Skrifter, 8. Raekke 111.3; reprinted in Collected Scientific Papers, 5-108 (1956). 

330. E. Schr6dinger, Quantisierung als Eigenwertproblem (Dritte Mitteilung: 
StSrungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien), Ann. Phys. 80, 
437490 (1926); English translation in Collected Papers on Wave Mechanics, 1928, 
pp. 62-101; p. 463, English translation, p. 81. 

331. E. Schr6dinger, Ref. 330, p. 463; English translation, p. 81. 
332. Letter from W. Wien to E. Schr6dinger, March 21, 1926. 
333. Letter from E. Schr6dinger to W. Wien, June 18, 1926. 
334. See A. Sommerfeld, Three Lectures on Atomic Physics (based on lectures given in March 

at the University of London), Methuen, London (1926). 
335, Letter from E. Schr6dinger to M. Planck, February 26, 1926. 
336. Letter from M. Planck to E. Schr6dinger, April 2, 1926. 
337. Letter from A. Einstein to E. Schr6dinger, April 16, 1926. 
338. Letter from E. Schr6dinger to A. Einstein, April 23, 1926. 
339. The exchange of correspondence between Schr6dinger and Planck, Einstein, and Lorentz 

has been collected together in Briefe zur Wellenmechanik (ed. Karl Przibram). These 
letters have been translated into English by Martin J. Klein and published as: Albert 
Einstein, Erwin Schr6dinger, Max Planck, H. A. Lorentz: Letters on Wave Mechanics, 
1967. 

340. Letter from A. Einstein to E. Schr6dinger, April 26, 1926. 
341. Letter from A. Einstein to P. Ehrenfest, February 12, 1926. 



Schr6dinger and the Rise of Wave Mechanics 179 

342. See, especially, letter from H, A. Lorentz to E. Schr6dinger, May 27, 1926 in Ref. 339. 
343. Letter from M. Planck to E. Schr6dinger, May 24, 1926. 
344. Letter from M. Planck to E. Schr6dinger, June 4, 1926. 
345. Letter from E. Schr6dinger to M. Planck, June 11, 1926. 
346. Letter from E. Schr6dinger to W. Wien, March t9, 1926. 
347. Letter from W. Wien to E. Schr6dinger, March 21, 1926. 
348. M. Born, W. Heisenberg, and P. Jordan, Zur Quantenmechanik II, Z. Phys. 36, 557-615 

(1926). 
349. E. Schr6dinger, 1Dber das Verh~iltnis der Heisenberg-Born~ordanschen Quanten- 

mechanik zu der meinen, Ann. Phys. 79, 734-756 (1926); "On the Relation between the 
Quantum Mechanics of Heisenberg, Born, and Jordan, and That of Schr6dinger," in 
Collected Papers on Wave Mechanics, (Blackie and Son, Ltd., London and Glasgow, 
1927), p. 45. 

350. E. Schr6dinger, 
351. E. Schr6dinger, 
352. E. Schr6dinger, 
353. E. Schr6dinger, 
354. E. Schr6dinger, 

Ref. 349, p. 735; English translation, pp. 45-46. 
Ref. 349, pp. 735-736; English translation, p. 46. 
Ref. 349, p. 726; English translation, p. 46. 
Ref. 349, p. 726; English translation, pp. 46--47. 
Ref. 349, p. 737; slightly revised English translation, p. 47. 

355. W. Heisenberg, ~rber quantenmechanische Umdeutung kinematischer und mechanischer 
Beziehungen, Z. Phys. 33, 879-893 (1925), Eq. (16). 

356. E. Schr6dinger, Ref. 244, p. 362, Eq. (5). 
357. E. Schr6dinger, Ref. 349, pp. 737-738; English translation, p. 47. 
35& E. Schr6dinger, Ref. 349, p. 739; English translation, pp. 48~49. 
359. E. Schr6dinger, Ref. 349, pp. 745-746; English translation, p. 54. 
360. E. Schr6dinger, Ref. 349, p. 749, English translation, p. 56. 
361. E. Schr6dinger, Ref. 349, p, 750; English translation, p. 57. 
362. Letter from W. Pauli to G. Wentzel, May 8, 1926. 
363. Letter from W. Pauli to P. Jordan, April 12, 1926. 
364. C~ Eckart, The Solution of the Problem of the Simple Oscillator by a Combination of the 

Schr6dinger and the Lanczos Theories, Proc. NatL Aead. Sci. USA 12, 473-476 (1926), 
p. 473. 

365. C. Eckart, Operator Calculus and the Solution of the Equations of Quantum Dynamics, 
Phys. Rev. 28, 711-726 (1926). 

366. C. Eckart, Ref. 365, p. 711. 
367. L. Flamm, Die Grundlagen der Wellenmechanik, Phys. Z. 27, 60Oq517 (1926). 
368. L. de Broglie, "Remarques sur la nouvelle M6canique ondulatoire," Compt. Rend. (Paris) 

183, 272-274 (1926), p. 272. 
369. P. A. M. Dirac, On the Theory of Quantum Mechanics, Proc. R. Soc. London A 112, 

661-677 (1926). 
370. C. G. Darwin, The Electron as a Vector Wave, Nature (London) 119, 282-284 (1927). 
371. E, Fues, Das Eigenschwingungsspektrum zweiatomiger Molekiile in der 

Undulationsmechanik, Ann. Phys. 80, 367-396 (1926). 
372. K. Schwarzschild, Zur Quantenhypothese, Sitz. Preuss. Akad. Wiss. (Berlin), 548-568 

(1916). 
373. T. Heurlinger, Untersuchungen fiber die Struktur der Bandenspektren, Doctoral Disser- 

tation, University of Lund, 1918; Zur Theorie der Bandenspektren, Phys. Z. 20, 188-190 
(1919); 1Dber Atomschwingungen und Molekiilspektra, Z. Phys. 1, 82-9t (1920). 

374. W. Lenz, Zur Theorie der Bandenspektren, Verh. Dtsch. Phys. Ges. 21, 632-.643 (1919). 
375. A. Kratzer, Die ultraroten Rotationsbanden der Halogenwasserstoffe, Z. Phys. 3, 

289-407 (1920); Die spektropische Best~tigung der Isotope des Chlors, Z. Phys. 3, 



180 Mehra 

460-465 (1920); St6rungen und Kombinationsprinzip im System der violetten Cyan- 
banden, Sitz. Gayer. Akad. Wiss. (Miinchen), 107-118 (1922). 

376. E. Schr6dinger, Ref. 256, p. 522 ft. 
377. See A. Sommerfeld, Atombau und Spektrallinien, 4th edn., (Fried. Vieweg & Sohn, 

Braunsehweig, 1924), p. 833 ft. 
378. E. Schr6dinger, Ref. 256, p. 526; English translation, p. 39. 
379. E. Schr6dinger, Quantisierung als Eigenwertproblem. (Dritte Mitteilung: St6rungs- 

theorie, mit Anwendung auf den Starkeffekt der Balmerlinien), Ann. Phys. 80, 437-490 
(1927); Collected Papers on Wave Mechanics, pp. 62-101. 

380. L. Mensing, Die Rotations-Schwingungsbanden nach der Quantenmechanik, Z. Phys. 36, 
814~ 823 (1926). 

381. W. Heisenberg, Ref. 355, pp. 892-893. 
382. M. Born and P. Jordan, Zur Quantenmeehanik, Z. Phys. 34, 858-888 (1925), p. 860. 
383. E. Schr6dinger, Ref. 256, pp. 513-514; English translation, p. 30. 
384. E. Schr6dinger, Ref. 349, p. 753; English translation, p. 59. 
385. E. Schr~Sdinger, Ref. 379, pp. 471Y471, 474; English translation, pp. 88, 90. 
386. W. Pauli, Ober das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik, 

Z. Phys. 36, 336-363 (1926). 
387. Letter from W. Pauli to G. Wentzel, May 8, 1926. 
388. Letter from W. Pauli to A. Land6, June 2, 1926. 
389. Letter from W. Pauli to G. Wentzel, July 5, 1926. 
390. G. Wentzel, l[3ber die IntensitS.ten in der R6ntgenspektren, Naturwissenschaften 14, 

621-622 (1926). 
391. G. Wentzel, Ref. 390, p. 621. 
392. G. Wentzel, Ref. 390, pp. 621~522. 
393. A. J6nsson, Intensit/itsmessungen von R6ntgenstrahlen mit Hilfe der Geigerschen 

Spitzkammer, Z. Phys. 36, 426456, 1926. 
394. H. H6nl, Die Intensit~iten der Zeemankomponenten, Z. Phys. 31, 340-354 (1925); Zum 

Intensit~itsproblem der Spektrallinien, Ann. Phys. 79, 273-323 (1926). 
395. R. H. Fowler, Applications of the Correspondence Principle to the Theory of Line 

Intensities in Band Spectra, Philos. Mag. 49, 1272-1288, 1925. 
396. See E. Schr6dinger, Ref. 256, Section 3.3. 
397. E. Fues, Zur Intensit~it der Bandenlinien und des AffinitS_tsspektrums zweiatomiger 

Molekiile, Ann. Phys. 81, 281-313 (1926). 
398. E. Schr6dinger, Quantisierung als Eigenwertproblem. (Vierte Mitteilung), Ann. Phys. 81, 

109-139 (1926); in Collected Papers on Wave Mechanics, pp. 102-123. 
399. See E. Fues, Ref. 397, Eq. (26), where Fues used a slightly different energy parameter. 
400. E. Fues, Ref. 397, p. 313. 
401. I. Waller, Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion 

der Spektra von He und Li +, Z. Phys. 38, 635-646 (1926). 
402. I. Waller, Ref. 401, pp. 640-641. 
403. G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen fiir die Zwecke der 

Wellenmechanik, Z. Phys. 38, 518-529 (1926). 
404. C. Eckart, The Hydrogen Spectrum in the New Quantum Theory, Phys. Rev. 28, 

927-935 (1926). 
405. See, e.g., Ref. 389. 
406. C. Eckart, Ref. 404, p. 935. 
407. P. S. Epstein, The Stark Effect from the Point of View of Schr6dinger's Quantum 

Theory, Phys. Rev. 28, 695-710 (1926). 
408. See P. S. Epstein, Ref. 407, p: 708, Eq. (61). 



Schriidinger and the Rise of Wave Mechanics 181 

409. M. Born, Zur Quantenmechanik der StoBvorg~inge. (Vorl~iufige Mitteilung), Z. Phys. 37, 
863-867 (1926). 

410. M. Born, Ref. 409, p, 863. 
411. M, Born and N. Wiener, A New Formulation of the Laws of Quantization of Periodic 

and Aperiodic Phenomena, J. Math. Phys. M.LT. 5, 84 98 (1926). 
412. M. Born, Ref. 409, p. 864. 
413. M Born, Quantenmechanik der Stol3vorg/inge, Z. Phys. 38, 803-827 (1926). 
414. M, Born, Ref. 409, p. 864. 
415. M. Born, Ref. 413, p. 803, 
416. M. Born, Ref. 413, p. 804, 
417. For details of Born's treatment of atomic collision processes, see J. Mehra and 

H. Rechenberg, The Historical Development of Quantum Theory, (Springer-Verlag, New 
York, 1987), Part 2, Chapter IV, Section 4, pp. 723-735. 

418. M. Born, Ref. 413, p. 826. 
419. Letter from W. Heisenberg to W. Pauli, May 5, 1926. 
420. Letter from W. Heisenberg to M. Born, May 26, 1926. 
421. W. Heisenberg, Mehrk6rperproblem und Resonanz in der Quantenmechanik, Z. Phys. 

38, 411426 (1926). 
422. Letter from H. Heisenberg to W. Pauli, June 8, 1926. 
423. W. Heisenberg, l~ber die Spektra yon Atomsystemen mit zwei Elektronen, Z. Phys. 39, 

499-518 (1926). 
424. W. Heisenberg, Ref. 423, p. 518. 
425. Letter from W. Heisenberg to W. Pauli, July 28, 1926. 
426. W. Heisenberg, in conversation with J. Mehra, April 1960 and June 1968. 
427. P. A. M. Dirac, The Fundamental Equations of Quantum Mechanics, Proc. R. Soc. Lon- 

don /I 109, 642-653 (1925); Quantum Mechanics and a Preliminary Investigation of the 
Hydrogen Atom, Proc. R. Soc. London A 110, 561-579 (1926); Relativity Quantum 
Mechanics with an Application to Compton Scattering, Proc. R. Soe. London A 111, 
405.423 (1926); On Quantum Algebra, Proc. Cambridge Philos. Soc. 23, 412~418 (1926). 

428. P. A. M. Dirac, On the Theory of Quantum Mechanics, Proc. R. Soc. London A 112, 
661-677 (1926). 

429. P. A. M. Dirac, The Elimination of Nodes in Quantum Mechanics, Proc. R. Soc. London 
A 111, 281-305 (1926). 

430. P. A. M. Dirac, Relativity Quantum Mechanics with an Application to Compton Scat- 
tering, Proc. R. Soc. London A 111, 405-423 (1926). Dirac noted in this paper that some 
difficulties arise between the "quantum energy" E and the quantum mechanical 
Hamiltonian, because the new variable E ought to commute with, say, the position 
variable, whereas the Hamiltonian does not do so. 

431. This was an old question in statistical mechanics, which led in the early 1920s to a great 
discussion between two groups, with Einstein and Planck advocating the 
indistinguishability of particles (see, e.g., M. Planck, Ref. 210) and Ehrenfest and 
Schr6dinger raising objections (e.g., E. Schr6dinger, Ref. 181). 

432. E. Fermi presented a short note, Sulla quantizzazione del gas perfetto monoatomico, 
Rend. R. Accad Lincei 3, 145-149 (1926), on February 7, 1926, and an extended version, 
Zur Quantelung des idealen einatomigen Gases, Z. Phys. 36, 902-912 (1926), was 
received on March 26, 1926. Fermi wrote to Dirac on September 1926, drawing his 
attention to his own earlier work. 

433. P. A. M. Dirac, in Conversations with J. Mehra, June 1968 at Trieste, Italy; also AHQP 
Interview with Dirac. 

434. E. Schr6dinger, Ref. 244, p. 372; English translation, p. 9. 



182 Mehra 

435. E, Schr6dinger, Ref. 256, pp. 489-514. 
436. E. Schr6dinger, Ref. 256, p. 506; English translation, p. 25. 
437. E. Schr6dinger, Ref. 256, p. 508; English translation, p. 26. 
438. Letter from W. Wien to E. Schr6dinger, May 13, 1926. 
439. E. Schr6dinger, Ref. 349, p. 735, footnote 2; English translation, p. 46, footnote 1. 
440. E. Sehr6dinger, Ref. 349, p. 751. 
441. Schr6dinger demonstrated this point by observing that one can obtain in matrix 

mechanics all "moments" of the product function ui(x)uk(x), especially uZi(x), from 
suitable matrix elements; thus the function u;(x) follows. (We may note here that 
Schr6dinger so far treated eigenfunctions more or less as real functions.) 

442. E. Schr6dinger, Ref. 349, p. 752. 
443. E. Schr6dinger, Ref. 349, p. 753; English translation, p. 59. Schr6dinger's claim with 

respect to the possibility of treating collision processes in wave mechanics was substan- 
tiated a few months later by the work of Max Born, as we have reported earlier. 

444. Letter from E. Schr6dinger to W. Wien, June 18, 1926. 
445, Letter from E. Wigner to J. Mehra, November 20, 1985. 
446. E. Schr6dinger, Quantisierung als Eigenwertproblem. (Vierte Mitteilung), Ann. Phys. 81, 

109-139 (1926), p. 109; in Collected Papers on Wave Mechanics, pp. 102-123, p. 102. 
447. E, Schr6dinger, Ref. 446, p. 110; English translation, p. 103. 
448. E. Schr6dinger, Ref. 446, p. 110; English translation, p. 103. 
449. R. Courant and D. Hilbert, Ref. 313, Chapter V, Section 8. 
450. This decomposition is by no means trivial mathematically; however, it can be shown to 

be valid in the case mentioned. Thus Eq. (398) leads to two equations, 

h 2 + T E ) O  =0  

and 

8~z2 8~ 2 ) 
- 7  v - T E  ~=o 

of which the second one provides physically no new information (as the parameter E is 
simply replaced by - E ) .  

45t. P. A. M. Dirac, Ref. 428, pp. 674-676. 
452. P. A. M. Dirac, The Quantum Theory of Emission and Absorption of Radiation, Proc. 

R. Soc. London A 114, 243-265 (1927); The Quantum Theory of Dispersion, Proc. R. 
Soc. London A 114, 610-624 (1927). 

453. Letter from W. Wien to E. Schr6dinger, June 23, 1926. 
454. See the announcement in Verh. Dtsch. Phys. Ges. 7, 36 (1926). Walther Nernst chaired 

the meeting. 
455. The meeting was chaired by the astrophysicist Robert Emden. [See Verh. Dtsch. Phys. 

Ges. 7, 38 (1926).] 
456. E. Schr6dinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. 

Rev. 28, 1049--1070 (1926). 
457. E. Schr6dinger, Ref. 456, p. 1049. 
458. E. Schr6dinger, Ref. 456, p. 1050. 
459. E. Schr6dinger, Ref. 456, p. 1070. 
460. E. Schr6dinger, Ref. 446, p. 139; English translation, p. 123. 
461. Letter from A. Einstein to A. Somrnerfeld, August 21, 1926. 
462. W. Heisenberg, Gesammelte Werke/Collected Works, Series CfVolume IV: Biographisches 

und Kernphysik, (R. Piper Verlag, Munich, Zurich, 0000), pp. 26-27. 



Schr~Jdinger and the Rise of Wave Mechanics 183 

463. Letter from A. Sommerfeld to W. Pauli, July 26, 1926. 
464. E. Schr6dinger, Ref. 446, pp. 133-134; English translation, p. 119. 
465. Letter from W. Pauli to P. Jordan, Re[ 363, Eq. (3). 
466. O. Klein, Quantentheorie und fiinfdimensionale Relativit~itstheorie, Z. Phys. 37, 895 

(1926). 
467. T. Kaluza, Zum Unit/~tsproblem de Physik, Sitzber. Preuss. Akad. Wiss. (Berlin), 

966-972 (1921). 
468. O. Klein, Ref. 466, p. 895. 
469. The nonretativistic form of the Schr6dinger equation for hydrogen results, if one puts 

hv=mcZ + E and [El ~mc 2. 
470. V. Fock, Zur Schr6dingerschen Wellenmechanik, Z. Phys. 38, 242-250 (1926). 
471. V. Fock, ¢dber die invariante Form der Wellen- und der Bawegungsgleichungen fiir einen 

geladenen Massenpunkt, Z. Phys. 39, 226-232 (1926). 
472. Th. De Donder and F. H. van den Dungen, La quantification d~duite de la Gravifique 

einsteinienne, Compt. Rend. (Paris) 183, 22-24 (1926). 
473. Th. De Donder, Application de la quantification de la Gravifique einsteinienne, Compt. 

Rend. (Paris') 183, 594--595 (1926). 
474. L. de Broglie, Remarques sur la nouvelle M~canique ondulatoire, Compt. Rend. (Paris) 

t83, 272-274 (1926). De Broglie's method of deriving Eq. (205) was basically the one 
originally pursued by Schr6dinger and independently given by Pauli. 

475. L Kudar, Zur vierdimensionalen Formulierung der undulatorischen Mechanik, Ann. 
Phys. 81, 632-636 (1926); Schr6dingersche Wellengleichung und vierdimensionale 
Relativit/itsmechanik, Phys. Z. 27, 724 (1926). 

476. W. Gordon, Der Comptoneffekt nach der Sehr6dingerschen Theorie, Z. Phys. 40, 
117-133 (1926). 

477. Pauli called Eq. (205) "the equation with many fathers": "I do not believe that the 
relativistic equation of second order with many fathers corresponds to reality" (Letter 
from W. Pauli to E. Schr6dinger, November 22, 1926); also see H. Kragh, Equation 
with Many Fathers: The Klein-Gordon Equation in 1926, Am. J. Phys. 52, t024-1033 
(1984), and J. Mehra and H. Rechenberg, The Historical Development of Quantum 
Theory, Volume 5, Part 2, (Springer-Verlag, New York, 1987), Chapter IV, Section 5. 

478. Letter from W. Heisenberg to W. Pauli, June 8, 1926. 
479. Letter from W. Heisenberg to W. Pauli, July 28, 1926. 
480. Letter from N. Bohr to E. Schr6dinger, September 1 t, 1926. 
481. For an account of Sehr6dinger's visit to Copenhagen, see J. Mehra and H. Rechenberg, 

The Historical Development of Quantum Theory (Springer-Verlag, New York, 1987), 
Volume 5, Part 2, Chapter IV, Section 5, and K. Stolzenburg, Die Entwicklung des 
Bohrschen Komplementarit~itsgedankens in der Jahren t924 his t929, Doctoral Disser- 
tation, University of Stuttgart, 1975. 

482. Letter from E. Schr6dinger to N. Bohr, September 21, 1926. 
483. Telegram from E. Schr6dinger to N. Bohr, September 27, 1926. 
484. See W. Heisenberg, Physics and Beyond (Harper and Row, New York, Evanston, and 

London, 1971), pp. 73-75. 
485. See J. Mehra and H. Rechenberg, Ref. 481, p. 823, and footnote 295. 
486. Letter from E. Schr6dinger to W. Wien, October 2t, 1926. 
487. Letter from N. Bohr to R. H. Fowler, October 26, 1926. 
488. G. Breit, A Correspondence Principle in the Compton Effect, Phys. Rev. 27, 362-372 

(1926). 
489. E, SchrBdinger, ~ber den Comptoneffekt, Ann. Phys, 82, 257-264 (1927). 
490. E. SchrBdinger, l~lber das thermische Gleichgewicht zwischen Licht- und Schallstrahlen, 

Phys. Z. 25, 89-94 (1924). 



184 Mehra 

491. G. Wentzel, Zur Theorie des Photoelektrischen Effekts, Z. Phys. 40, 574-589 (1926). 
492. G. Wentzel, l~ber die Richtungsverteilung tier Photoelektronen, Z. Phys. 41, 828-832 

(1927). 
493. J. Robert Oppenheimer, Quantentheorie des kontinuierlichen Absorptionsspektrums, 

Naturwissenschaften 14, 1282 (1926). 
494. J. Robert Oppenheimer, On the Quantum Theory of the Problem of Two Bodies, Proc. 

Cambridge Philos. Soc. 23, 422-431 (1926); Quantum Theory and Intensity Distribution 
of Continuous Spectra, Nature (London) 18, 771 (1926). 

495. J. Robert Oppenheimer, Zur Quantenmechanik kontinuierlichen Spektren, Z. Phys. 41, 
268-293 (1927). 

496. C. Manneback, Die Dielektrizit~itskonstante der zweiatomigen Dipolgase nach der 
Wellenmecbanik, Phys. Z. 27, 563-569 (1926). 

497. L. Mensing and W. Pauti, Ober die Dielektrizit~itskonstante yon Dipolgasen nach der 
Quantenmechanik, Phys. Z. 27, 509-512 (1926). 

498. C. Manneback, Ref. 496, p. 567. 
499. F. Reiche, Die Quantelung des symmetrischen Kreisels nach Schrrdingers 

Undulationsmechanik, Z. Phys. 39, 444-464 (1926). 
500. E. Schr6dinger, Ref. 345, pp. 747-748. 
501. H. Rademacher and F. Reiche, Die Quantelung des symmetrischen Kreisels nach 

Schrrdingers Undulationsmechanik. II, Z. Phys. 41, 453-493 (1927). 
502. D. M. Dennison, The Rotation of Molecules, Phys. Rev. 28, 318-333 (1926). 
503. R. K. Kronig and I. I. Rabi, The Symmetrical Top in the Undulatory Mechanics, Phys. 

Rev. 29, 262-269 (1927). 
504. C. Manneback, DielektrizitS.tskonstante und Starkeffekt polyatomiger Dipolgase mit 

symmetrischen Molekfilen nach der Wellenmechanik, Phys. Z. 28, 72-84 (t927). 
505. W. Pauli, ~ber das Wasserstoffmolekfilions, Ann. Phys. 68, 177-240 (1922). 
506. K. F. Niessen, Zur Quantentheorie des Wasserstoffmolekiilions, Doctoral Dissertation, 

University of Utrecht, Utrecht: I. van Druten. 
507. Letter from W. Heisenberg to W. Pauli, November 23, 1926. 
508. Oyvind Burrau, Berechnung des Energiewertes des Wasserstoffmolekiil-lons (Hf)  im 

Normalizustand, Kgl. Dansk. Vid. Selsk. Math.-Fys. Medd. 7, No. 14 (1927). 
509. E. Schrrdinger, Reisetagebuch. See K. von Meyenn, Die Rezeption der Wellenmechanik 

und Schr6dingers Reise nach Amerika im Winter 1926/27, Gesnerm" 39, 261-277 (1982). 
510. Letter from E. Schrrdinger to W. Wien, September 3, 1927. 
51t. A. Schrrdinger, AHQP Interview, April 5, 1963, p. 8. 
512. C. L. Davisson and L. H. Germer, The Scattering of Electrons by a Single Crystal of 

Nickel, Nature (London) 119, 558-560 (1927). 
513. G. P. Thomson and A. Reid, Diffraction of Cathode Rays by a Thin Film, Nature 

(London) 119, 890 (1927). 




