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An attempt to extend the postulational basis of quantum theory by introducing correl-
ations between the results of measurements, developed in this article, leads to negative joint
probabilities for otherwise meaningful sets of measured values. Since, so far as can be seen,
the attempt made is the only one compatible with the theory of random variables, and is
incompatible with the structure of Hilbert space, we conclude that correlations are absent.
This result, though it is tantamount to a denial of von Neumann’s projection postulate and
the “reduction of wave packets” on measurement, is nevertheless shown to be entirely satis-
factory from the physical point of view.

§ 1. Imiroduction

It has beceme customary in textbooks and courses on quantum mechanics
to allege that a measurement of an observable whose operator is X, when per-
formed on a physical system in a state ¢, will leave the system in the cigenstate
¢,, which corresponds to the measured value z,. If ¢ is regarded as a vector
in Hilbert space, the measurement is represented by an operator M which,
when acting on ¢, projects it in the direction of ¢,; the index 7 is unpredictable
on the basis of the usual axioms of the quantum theory, although the change
in state can be formalized by assigning to M a definite mathematical operator.
This proposition, seemingly first advanced by von Neumann,” will be called
the projection postulate.

The context in which it arose is an interesting one. There are, he sug-
gests, three stages of causal or acausal description. The first renders measure-
ment a totally statistical act, allowing only the assignment of relative frequencies
to measured values without implying what value a second measurement, per-
formed immediately after the first, will yield. The second stage permits a
variance of measured values only before an initial measurement, which then forces
the outcome of later measurements of the same observable in strict deterministic
fashion. According to the third or highest version of causality, every measure-
ment is completely determined, as it is in classical physics. The second stage,
von Neumann holds, is the one upon which quantum mechanics operates, and
to insure it he introduces the projection postulate.

* Fulbright Visiting Professor at the University of Tokyo, during the summer semester 1961.
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Now it is a curious fact that in the applications of quantum mechanics to
any physical situation this postulate is never needed, even though it is occasion-
ally invoked—uselessly to be sure—in the explanation of cloud chamber tracks.?
Among its less desirable consequences are the Einstein-Podolski-Rosen paradox®
and the so-called reduction of the wave packet. The latter phenomenon, which
is the contraction of a wave packet spread through space into a delta function
when a precise position measurement is made, has given rise to the query
whether quantum mechanics conveys an objective description of physical reality
or is merely a subjective vehicle for an observer’s knowledge. Such grave
implications, together with important recent reconsiderations” of the measure-
ment problem, have motivated the present analysis which tends to show an
inconsistency of a formal sort in the unqualified acceptance of the projection
postulate. While our discussion will be limited to elementary, non-relativistic
quantum theory, no obstacle is apparent which would preclude its extension to
four-dimensional analysis and to field theory. '

Aside from the fact that the projection postulate is almost never included
among the formal axioms of the theory, its use being limited to collateral ex-
positions of a vague philosophic kind and of no apparent relevance to physical
problems, it invites fundamental suspicion for the following reason. The so-
called “ Copenhagen interpretation” is said to be a radically statistical one,
permitting no connection with the prediction-potent, individual events of
classical physics. Now in every normal theory of probability or random wvari-
ables it is understood that a single observation cannot establish a probability
distribution, a large sample of observations being required for this end. Yet
the customary quantum theory, if it includes the postulate in question, claims
to be a radical probability theory wherein “ God plays dice ” and at the same
time pretends to perform the most uncrthodox feat of creating, in a single act
of measurement, knowledge of an entire probability distribution, thus setting
its competence high above what is regarded as normal by statisticians. It is
for this reason among others that one of us has in the past directed criticism
against the projection postulate (understood in von Neumann’s sense),” and the
strictures were based upon the observation that there are many good measure-
ments, fully accredited by physicists, which empirically violate the postulate.®
In the present article an attempt is made to incorporate the postulate in the
foundations of the quantum theory. The success is only partial, but the effort
is interesting inasmuch as it shows that negative probabilities are introduced
when the requisite axiomatic extension is made.

A set of basic propositions sufficient for all of quantum mechanical analysis
is the following.”

1. To every observable there corresponds an operator.
2. The operand ¢ of the operator represents a physical state. ‘
3. The numerical values which a measurement upon an observable with oper-
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ator P can yield are the eigenvalues of P.

4. When a physical system is in a state ¢, the expectation value of a sequence
of measurements on the observable whose operator is P is given by

E(Py=p=|¢* Poar= (", Py).

This axiom is written in the coordinate (Schrodinger) representation ; its
isomorphic forms in other representations are well known.”
5. States change in time according to the Schrodinger equation

89[}
ot

il =H¢

or its equivalents in other representations. Added to this list are symmetry
requirements, like the exclusion principle, which are of perhaps a less funda-
mental or even derivative status. They will not be included here. Perhaps it
should be said, however, that a separate premise concerning single-valuedness
and normalizability of states is quite unnecessary, since such items follow from
4. The uncertainty principle, of course, is implied by the set when 1 is imple-
mented by a specific assignment of operators which are empirically found to
be satisfactory. Finally, 4 can be shown to entail the statement: |(¢¥, &) |?
is the probability that the value z; (whose correlated eigenstate is ¢, ) will
occur in a measurement of X on a system in state ¢. |

§ 2. Covariance among measurements

The preceding axioms are in complete conformity with the normal pro-
cedures in random-variable analysis.” What they say ignores correlations be-
tween the results of different measurements. On the other hand, the projection
postulate stipulates a very specific correlation between measurements, and it
cannot be discussed unless our set is suitably enlarged to provide for correla-
tions. What one would like to know is the probability that a joint measurement
of two random variables, X and Y, shall yield values z, and y;, provided the
system is known to be in some well-defined quantum state ¢. The latter will
be taken for simplicity to be a pure case, not a mixture. By joint measurement
we mean either two simultaneous measurements of X and Y or, as an interesting
subclass of such procedures, the measurement of X at time # and of Y at time
t,. The variables X and Y can of course be identical.

This specification contradicts the claim, often encountered in the literature,
that certain variables, like position and momentum, cannot be measured simul-
taneously. If this were true, such measurements must be ruled out either by the
axioms of quantum mechanics or by the empirical contingencies of experimental
physics. The latter is certainly not the case, and the former is impossible
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because the axioms fail to speak of correlations. The joint probability in ques-
tion, as defined in the foregoing paragraph, will be designated as

P(xiy.'yf; 9,})'

Briefly, it is the probability for the occurrence of z; and y; on the evidence
¢. It must satisfy the relations

2 Pz, 955 ¢) =1, (1)
2 P(zi, 555 9) = P55 ¢), 25 P(za, 955 ) =Pl §). (2)

The ordinary probabilities, P(z;; ¢) and P(y,; ¢) are indeed given by our axi-
oms, Viz:

Pz ¢)=|(¢", ) (3)
with a similar relation for P(y;; ¢). '
The quantity thus introduced must be carefully distinguished from the

probability W{(z,, y,) that, when z, is known to occur with certainty, y, will
ensue. It, too, is given by the axiom set:

Wz, yp) =1(¢ss ¢,) 1% (4

If the projection postulate were valid, the following relation might be thought
to hold :

P(xza y];‘ib):]((/J*> beb)‘zW(:Lza yJ): (5)

provided y; is observed immediately after z,. This version, however, cannot
be accepted because it violates one of the relations (2).

A possible definition of P(x., y;; ¢), indeed one which is compatible with
and almost suggested by axioms 1-5, is this:

Pz, y55 9)=1(¢*, ) (&, $) 1" (6)

The closure relation for complete sets of eigenstates may be used to show that
this formulation satisfies relations 1, 2 and 3, but it is clearly different from
Eq. (5) and it does not allow measurements on Y to depend in any way on the
outcome of measurements on X. For this reason, one might look upon Eqs. (5)
and (6) as imperfect and search for another possible definition of P, perhaps one
closer to Eq. (5), at any rate one which introduces correlations. This is best
done via the concept of covariance, as follows :

Let X and Y be random variables. Then

Cov(XY)=E(XY)—Zy. (7)
If X and Y are identical, Cov(XY) becomes the variance of X, Var(X). The

structure of our axioms, particularly 4, suggests at once that we postulate for
a quantum mechanical ensemble of measurements on a state ¢
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Cov(XY) = (¢*, XY¢) — (¢, X¢) (¢*, Y). (8)

This interpretation differs from the one which (illegitimately, it seems) takes
the operator XY to be associated with an observation of X followed immediately
by an observation of Y.
Assuming that X and Y are hermitean, one can at once establish the fol-
lowing reasonable facts.
If ¢ is an eigenstate of X
Cov(XY)=0,

for in that instance
(F, XY, )= (X* g5, Y, )=z y=%y.

The same result holds when ¢ is an eigenstate of Y.
In general, however, Cov(XY) according to Eq. (8) is complex. But

Cov*(XY)=Cov(YX).

It is therefore indicated that Eq. (8') be replaced by the definition

Cov(XY) = (g, TXFEXE g} (g, 9 (9%, Y9, (8)

We shall thus base our further inquiry upon this formulation, which leaves
the conclusions concerning eigenstates unaltered.

A further interesting relation can be easily established. If, in one of the
well-known forms of Schwarz’ inequality, to wit

SHD G D= [0+ (0]
we take f=(X—-xz)¢,
g=(Y—=y)¢
we find at once
[Cov(XY) < Var(X)-Var(Y). (9)

In consequence one is permitted to define a correlation coefficient o after the
manner of random-variable theory :

(X, Y)=Cov(XY)[Var(X) Var(Y)|™? (10)

and the range of o is the expected one, —1<<o<"1.
A few examples illustrating these relations seem to be in place.

<

a) The spin components of a single electron “anticommute ”. Hence, if

X and Y are z- and y-components of the spin,

2
Cov(XY) = —zy=(a* b-+ab*) (ia*b— iab™) ﬁ,
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provided the spin function is (Z) For a state ¢ which is an eigenstate of the
z-component, either a or b is zero, and the covariance vanishes.

b) Less trivial, perhaps, is the case of a system with angular momentum

J=1%, we now write X, Y, Z for the components of J/7i. These operators have
the matrix form:

—— {0 1 0 [ 0—i O 10 0
X= A/f ) ::,\/ ....... i O——i), Z=[0 0 0
o 1 0 2 0 i 0 0 0-—1/.

Their common eigenvalues are —1, 0 and 1 and their eigenvectors form the
following list, to which reference will be made again in the next section. The

Eigenvalue ] —1 t 0 t 1
| o _ . - _ e _ . e
Vi !
Gz= v’} 0 V'3
-} 3
Vi
4= —viE 0 Vi
-3 % -
0 0 1
¢, = 0 1 0
1 0 . 0
operator

S (XY4+YX)=—| 0 0 0],
2 2 i 0 0

has eigenvalue —1, 0 and 1. Simple computation shows that, for a state

N

Cov(XY):——ulA (a*c— ac")z—!—f [(a*+c*)b+ (a+c)b*]

X[ (@*—c*)b— (a—c)b*]i.

Interestingly again, if ¢ is an eigenvector of Z, the covariance vanishes. The
same is true, of course, when ¢ is one of the ¢, or ¢, in accordance with
theorem a) following Eq. (8').

¢) Next, let us compute the covariance between position measurements at
‘time ¢=0 and at time z The operator X corresponding to a measurement of
x at t=0 is simply x-; at the later time it is

Xc ~ T*JL‘T,
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\

where T is the time-development operator, T=exp ( —is%{dt). For H we shall

take the Hamiltonian of a free particle. In that case, since for any operators

A and B
¢ Bet=B+[A, B]+51?.[A, [A, B]]+--

in the notation of commutator brackets, we have
X,=¢% H‘xe“%mzx—l——gv[l—[, X]=z+-t-P (12)
m

where P is the linear momentum operator. In general T satisfies
=T

when it is written in the form of a differential operator; in matrix form it is
unitary. If the eigenfunctions of an operator Q at t=0 are ¢;, then the eigen-
functions of the same operator at time z are 7*¢;. To see this, assume the

equation
0¢i=q:d,
to be satisfied at t=0. Let ¢,* be the solution of
(T*QT) ' =qi" ¢i".
On multiplying by 7" from the left we obtain
Q(T") =q." (T¢:")

which means that 7'¢;" is an eigenfunction and ¢, an eigenvalue of Q. Hence
¢;" must equal g;; the eigenvalues cannot change in time. And since T¢, =¢;,
we have ¢'=T*¢; in view of Eq. (11). Evidently, ¢," is the ancestor of ¢, at
time —¢ in accordance with the Schrodinger equation.

On using Eqgs. (8) and (12) we obtain, upon expansion,

z

Cov(XX;)=Var(X) +—7;;;—Cov(XP) (13)
where X without subscript refers to z=0.
For ¢ we assume a packet of the form
2\ —1/4 . z* »
at =0, which transforms itself into
22—k +’aikzﬁ£ )
= (ﬂ.az) —1/4 (1 _{_7:7?;2>> —1/2 exp — 771 (15)

2 (az —l~th t>

mn
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at time z It is then easily seen that

Cov(XP)=0 (16)
so that :

Cov(XX,) = Var(X) :_;i a7

at all times.
The correlation coefficient defined in Eq. (10), however, depends on &z
Var(X) has just been computed, and

2
Var(X,)=Var <X+~-—él~-P) =Var(X) -+- IL{ Var(P) —{—7—2
» m .

L Cov(XP).
m

m
But Var(P)="7%"/2a’, hence, in view of Egs. (16) and (17)‘,

Var (X)) :“;- [1 + (jhfm) 2] .

“ma®

Therefore the correlation coefficient between a position measurement at time 0

=1+ () T

It remains near 1 if the initial extent of the wave packet, a, is large. The fact
that it does not depend on £k, the speed of the packet, is also reasonable, for
o is 1 for random variables which are connected by a linear relation, e.g.

and time ¢ is

X=2x0+ VL

§ 3. Joint probabilities

Having shown that the covariance defined in Eq. (8) is not without at-
tractive features, we next examine the joint probabilities it entails. As is known
from statistics”

Cov(XY) = 3 P(@0y)) %6y~ 25 (18)
Eq. (8) takes this form if we use the alternate expansions

¢=73 au; and ¢= 3 b;v;
¢ . 7

in orthonormal sets z and v which are, respectively, eigenstates of X and Y.
For then :

(¢% XY9) = | X* X at Y Y b,0,de= 3 (a*b, ; w0, A7) 0y ;.

:
Py 7

Comparison with Eqgs. (18) and (8) allows a simple identification of P:
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Pz, y;5 (/)):R[ai*bj‘gui* 0;de]=R($%, ¢.) (¢, ) (P, $,)1. (19)

Because of the closure relation these joint probabilities satisfy Eqgs. (1), (2)
and (3). If ¢ is either ¢, or ¢y, they also lead to Eq. (4), but they are not
in general accord with the projection postulate in the narrow form here under
consideration. Yet, as is clear from the preceding section, they introduce cor-
relations between measurements. When X and Y commute

P(x19y17 (/j):P(xzy 9/))-(3“’

provided proper allowance is made for degeneracies. Most unfortunately, how-
ever, the defining relation (19) does not prevent the joint probabilities from
being negative. This is a rather essential aspect connected with the present
attempt to introduce correlations between measurements, and it is difficult to
see how it can be avoided; its causes lie very deep, and their removal would
require some radical changes in the axioms listed in the Introduction. For
such reasons it seemed worthwhile to illustrate the case by computing a few
examples.

a) Returning to the system with angular momentum J=1 to which discus-
sion b) of §2 was devoted, we label the eigenvalues —1, 0 and 1 by indices
p and o, allowing them the values —1, 0 and 1. The state ¢ has again the
form of a column vector with components a, & and ¢. For convenience we
introduce the abbreviations

S:*/w;: (a+c), d:N/j—‘}’,: (a—c).

P(zi,y;5¢)=P,,=R($*, u,) (v,*, ¢) (u,*, v,),

Now

2, and v, being the eigenstates ¢, and ¢, listed in 2b. One finds

@ 1>—§/f~~<s

(7, u) =

(¢, 1) = ,/ 1 (),
(W ) =y/ ; (d+ib),
(o', ) =s,

' )=y L-(d=ib).

The last factor of P,, is
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2 —1 0 1
! ,
- V-

. B 1 1
(Z£P>Ua>" O /\/2 O /\/27
1
2

S / L
2 9

From these all joint probabilities can be compounded. In the case where ¢ is
an eigenstate of J, (see §2b for the form of these eigenstates!) one obtains

L

1 —

o L o0
4
1 1
I S T A
P, 1 i if J, 1 or +1
o L 0
1
and
1, 1
4 4
P.= 0 0 0  ifJ,=0
1, 1
4 4

These are perfectly acceptable probability distributions whose meaning is
clear and simple. For instance, if J, is known a priori to be 1 or —1, there
is no chance of finding J, and J, manifesting equal values in simultaneous
measurements, nor can they exhibit opposite values. One can only obtain a zero
value for one and +1 or —1 for the other. If J, is 0, the situation is the
reverse. Notably, negative probabilities do not occur.

Generally, however, the situation is quite different. If s, 4 and & (which
must obey the normalization rule |s|*+|d|*+|b|*=1) are taken to be, respec-
tively, 0.6, 0.6 and 0.53, one calculates

P_l_lz.,in (i (s*—b%) (d+ib)} = —0.000.

b) Let z; be the position z of a particle, y; its simultaneously measured

linear momentum, so that (if p==k#i).
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I r

Pz, ks ¢)=R (W%z) ¢*(q1) dqu ce”" ¢ (gs) d%} 0(gs, ) c* ™ dgy

=[P R{g* ™ | ¢ (g) e dg).

Assume for ¢ a wave packet of the form (14). Evaluation then leads to the
expression

— 2
Pz, k; ) =12 |c|? cos (k— k) xexp~f‘1)—~— [-§;+ (k—ko)2a2]. (20)
Z a .

The fact that P has an absolute maximum at =0 and k=k, is satisfying, of
course, as is the diffusive exponential decrease with x and %; but the oscillating
factor prevents acceptance of the result.

¢) As a last example, we discuss the joint probability, again in the simple
case of a moving free particle, for position measurements at different times.
Here we have

Py, 245 ¢) = RUGF, ) (f, 425 (42 4}, (21)
(/}»’01:3(1:7 xl)?

o, 2m 2 7ht

— 0D

1 ¢ 1—z 1/2
Pog= \exp[ik(x-x2)+i ﬁk,{l:z <m > exp[—iom(:c——:cz)zjl.
2%t
Insertion in Eq. (21) gives (with certain precautions when t—>0)

P(x;zy, GO)ZR{ 72?7"/’*(-%1) EXP[_Z. m'*(xl—xZ)z]
ht 2%t

ngb(:(:) exp[z' Z’Zt

Here we use once more the form (14) for ¢. We carry out the integration
and; to make the result less unwieldy, put x,=0, obtaining

g </€__vmx) ?
’ o . 2\ —1/2 :
P(0, z.; sﬁ):Ri‘/2 " <1— una ) exp——é—— SRR LIV | SN

(x—xz){l dx}

ht ne 1 ima’
, 7z
Our choice of normalization has been such that p now represents a probability

density (per unit range of z; and x,).
Two limiting cases are of primary interest. For large ¢, i.e. if #iy/m>a’,

2 2
PO, 25 $)~ /2 7 ex [_aw@ _ ??,Z,,x,> J
0,25 9) pe CPLT o\ g,

This is always positive and has a maximum at the classical position of the

particle, x="kofi/m-1.
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In the opposite extreme, when 7iz/m<a’

P(O,x‘, (I/)> NR{( ______ 7 fl _________ >1/2 exp ':Z < 7: — a)} (23)
Tha’t 4
where
2
=17 ml) e
<€ it 2m
or

P(0, 2% ¢)occcosa+sine.

For small #, z can be chosen so that this quantity is negative. Closer inspec-
tion of Eq. (23) reveals, for finite %, and z, the satisfactory limit
lim P(0, z; ¢)ocd <yc k°h-t>.
>0 : V77
In all preceding examples Eq. (19) was employed as the definition of joint
probability.  Although reasonable, this definition is not unique. Its lack of
uniqueness arises from the circumstance that we have inferred its form from the
single product moment, (¢*, XX¢), leaving all higher moments (¢*, X"Y™¢)
with their possible variants (¢*, X" ' Y™X¢), etc., unspecified. We have there-
fore considered another possibility which is also compatible with Eq. (18) and
has certain other advantages, namely
Pz, y; $) =20 | | o(a, ) expl ~i(az+8y)] dads
with
p(a, 8)=(¢*, expli(aX+3Y)]¢)

where in accordance with our previous notation X and Y are operators.’” When
the analysis is carried through for a case similar to example b in which X is
the position and Y the momentum of a particle, but ¢ is chosen to be a super-
positian of two gaussian functions

¢($) — [2a 1/:7(1 +e—b2/a2”—1/2 [e‘(m—b)2/2a2 +e—(;u+b)2/2az] ,

one again obtains a result with a trigonometric factor which can cause P to
be negative.

There is, however, a convincing argument which establishes the impos-
sibility of introducing any sensible joint probability distribution that exhibits
correlations. |

The analysis of the possibility of introducing joint probabilities in quantum
mechanics proceeds from the observation that a classical joint probability distri-
bution is completely determined only if a certain set of its moments is specified.
In the case of random variables which range over an infinite set of values,
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specification of all the moments is necessary.

Let us now return to the previous example of angular momentum 7 and
attempt to construct a joint probability distribution P(x;,y;; ¢), which we now
write for brevity in the form f(z, v), where X and Y are taken to be 1/%J,
and 1/7%J, The eigenvalues of X and Y are then 1, 0, and —1. It follows
from postulate 3 that we need to consider only (f(1, +1), f(—1, 1), /0, +1),
J(+1,0) and f(0, 0)—i.e. the space of our random variables has only 9 points,
so that only nine moments are needed to detemine f(z, y). These moments

are {x), {y), (a*), (¥, {xy), {2y), {zy*), (2’y*), and the normalization
{1). The classical formulae

(z"y™ )=z, y) z"y™ m=0,1,2 and n=0, 1, 2

2

for these nine moments can be inverted to give

S 2D =1/4(% (xy) £ (2Py)+{ay) +{2"y7)),
J(=1, £ D) =1/4(F (zy) £ (27y) —{zy") +{2*y*)),
SO, £1)=1/2 (£ () +{»") F(2y)—{(2*y")),
JEEL 0)=1/2 (£ () +{z*) F(xy*)—{(2"y?)),
S0, 0) =1+{x*y") —(x") —{¥?).

Our previous treatment left all moments with 7 or m > 1 undefined.

We now examine all possible quantum mechanical definitions of the moments.
Moments of the form (z") or (y") are already specified as (¢*, X" or
(¢*, Y™y by the axioms of quantum mechanics. The other moments (““cross
moments ) will be taken, in similar fashion, to be the expectation values of
hermitean operators. These operators will be homogeneous polynomials in X
and Y, and must reduce to X"Y™ for commuting operators. Furthermore, sym-
metry between X and Y must be maintained—i.e. {z"y™) must go over into
{x™y") on interchange of X and Y. The following choices are then pogsﬂale
with «, 3, 7, 0, and & as arbitrary real parameters.

{xy)=1/2(¢*, XY+ YX¢),
(z’y)=1/Ca+8) (%, (XY +YX*) +5XYX|P),
(xy?)=1/QRa+3) (¢*, [a(XY*+ Y X) +pYXY|¢),
(2y?)=1/Cr+20428) (¢*, | 1(X*Y*+ Y X?) +0(XYXY+YXYX)
+HE(XY?X+YX?Y) ).
The question of interest is then the following: Do there exist values of these

arbitrary parameters for which all of the f(x, y)(x=-—1,0,1and y=—1, 0, 1)
are positive for an arbitrary state function



Correlation between Measurements in Quantum Theory 735

a
=106 ?
C

Let us assume that such values exist—in particular, that a satisfactory value of
& exists. In order to find what it should be, we calculate certain of the moments
for the arbitrary state:

(1)=lal®+|b]*+|c|?=1, if ¢ is normalized

(x*)=1/2(|b]*+a* c+ac*+1),

<xy>=-z'/2(a*c—~ac*),

(xyDy=a/2a+F) v 2] (a*+c*)b+ (a+c)b¥],

(z*y)=—ia/2a+F)v2[(a*—c*)b— (a—c)b*],

(2’y*)=1/2Gr+0+8)[27|oPP+E(al* +]eH].

Now the quantities f(1, 1)+£(1, —1)=1/2((xy*)+{2*)) and F(1, 0)
+7(—1, 0) ={(x*)—{x2*y*) must be positive or zero for any ¢. In particular,
for the state a=—1/y/2, 6=0, ¢=1/1/2, {(2*)={(xy*)=0 and (z’y’) must
also be zero in order to make the two quantities positive or zero. But for this

state, {(x’’)=¢&/2(y+0-+¢), from which we conclude that & must be zero.
Having fixed the value of & we now compute f(1,1) for the state a=exp

(as a consequence of é=0) and {xy)=—1/2 to give f(1, 1)=—1/8. Thus it is not
possible to find a satisfactory value of & from which we conclude that one
cannot define a non-negative f(x, y) which exhibits correlations.

The conclusion that joint probabilities of the usual type cannot be formulated
in quantum mechanics was reached by De Broglie,”” whose reasoning was based,
however, entirely on Eq. (5). He regards this equation as fundamental and
inevitable.

There arises at this point a rather subtle distinction which is worth noting.
The inevitable equation, which relates joint probabilities to so-called conditional
probabilities, is this:

P(.:Ci, Vs S/J)Z,P(xi)f)/(x,,;, yj) ' (5/)

where the conditional probability’ P’ is the probability that y, will be observed
when xz; is known to be present or, on our specific condition, P’ is the relative
frequency of y; in a subclass of measurements all of which yield z;. It is not
necessarily the same as W{(x;y;), which represents the probability for the oc-
currence of y; when z; is known to occur with certainty, that is, when ¢ is
an eigenstate of x;. The projection postulate is the statement which says that
P’'=W. De Broglie’s argument therefore embraces this postulate; instead of
rejecting it, he perhaps redefines joint probabilities in an unusual way.
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If, as we suggest, there are no correlations between measurements, P/(x;y;)
is simply P(y,) in dccordance with Eq. (6), and Eq. (5’) above is satisfied
without artificiality, although it is now trivial.

§ 4. Conclusions

There appears to be no reasonable criterion for ruling out those instances
in which joint probabilities are negative. Hence it is necessary to reject in foto
both our definition of the covariance, Eq. (8), and its consequence, such as
Eqg. (19). The axioms stated in the Introduction do not seem to tolerate this
extension. We are thus led back with evident cogency to the proposition which
the projection postulate endeavored to avoid, namely to Eq. (6) with its impli-
cation that measurements of non-commuting observables are in general uncor-
related. For if (6) is used in Eq. (18), Cov(XY)=0.

By this return, however, nothing of value in quantum mechanics is sur-
rendered. For a certain kind of correlation is automatically carried in the state
function itself and becomes manifest in the temporal changes of ¢. The struc-
ture of the axioms is such that the question as to the connection between a measure-
ment at time # and at another time 7, need not be asked: Each independent factor
of the definition (6) alone provides the answer to the proper question: What
is the probability that X shall have the value z; at time ¢ if the state is ¢(¢) ?
It is, of course, |(¢*(#), ¢.,)|>. Employing once more the example of a wave
packet, whose form is Eq. (14) at z=0, while ¢(x, #) is given by Eq. (15),
we find for the probability of encountering the particle at z, #

s (o kT )“’
[(z, &)= {(ﬂaz) [1 + <m;~> ]} exp — ;_}_ﬁm%zil—i* . (24)
- m’a

This result has all the qualities needed for the description of the motion of
particles: It reduces to classical propagation with speed k7i/m if either m or
a is large; it exhibits quantum mechanical diffusion through the dependence of
its half-width on z And it clearly makes no concession to the occurrence of a
measurement. If a measurement is made with minimal disturbance, the pre-
sumption is that it can be repeated at a later time, yielding a result in accordance
with Eq. (24) ; if it is destructive, repreparation of the state ¢ at time 0 must be
understood. For example, nothing more than Eq. (24) is needed to explain
the production of ion tracks.

There is in fact a bonus in this more modest interpretation. For it pre-
serves reference to the prepared state throughout the process of measurement.
If a measurement did produce an eigenstate, the memory of the state before
measurement would be lost. An exact measurement of z made upon a state
represented by a plane wave would yield a d-function, and so would a measure-
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ment upon a spherical wave. Yet we know that the probability for a second
measurement at a later time and a different place will depend on the type of
wave that existed before the first measurement was made. This fact is correctly
rendered by Eq. (6) and its corollary, Eq. (24), but is denied by the projection
postulate. : ‘

Earlier, attention was called to von Neumann’s three stages of causality.
Our conclusion indicates that his threefold division does violence to quantum
mechanics and that, insofar as it is tenable at all, we are closer to the first
than to the second stage. The logical inconsistency of using a probability theory
in which a single observation determines a distribution function is thus removed.

The version of the projection postulate we were forced to deny is the one
most widely featured, but probably not the one most generally believed. Thought-
ful physicists, when reflecting upon the measurement act, find themselves com-
mitted to a statement which is not postulational and is far milder than von
Neumann’s axiom ; it is this. Many types of measurement (not all) involve a
selection of systems from an original ensemble, and by proper subsequent ma-
nipulation one such separated set can then be isolated. This set may represent
an eigenstate of the measured observable. One might even wish to argue—against
all reasonable practice—that this specification defines a quantum mechanical
measurement. Even if this argument is accepted there is still no reduction of
the wave packet in the sense that the original wave function is suddenly and
acausally changed to another form; for the new state, if any, refers to a different
physical ensemble for which the old state had no meaning. A simple analogue
is the transition from a game involving two dice to one with a single die, for
which the spread of probabilities is smaller. This change is not properly
discussed as a sudden collapse of probabilities, nor is it puzzling.

A fuller theory of measurement in which all these questions are discussed
will be published elsewhere. It describes the measuring act as a conversion
from a pure case to a mixture, in von Neumann’s sense. This accounts for
the so-called ““ cancelling of phases” said to occur during measurement. The
classical probabilities present in the mixture can then, if it is desired, be altered
to form new states. Except for the concept of a mixture of states, this complete
theory requires no postulate additional to those listed in § 1.

The support of the Guggenheim and National Science Foundations for this
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