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Abstract. We give a causal interpretation of a double Stern-Gerlach experiment on the 
basis of spacetime solutions to the Pauli equation. For an initial singlet state, we determine 
the continuous particle trajectories and spin vector orientations. The graphical results 
exemplify how non-local actions of the quantum potential and quantum torque give rise 
to a correlated evolution of dynamical variables. 

1. The causal description of the Pauli spinor 

In a recent paper [ l ]  we illustrated a model proposed by Bohm er a1 [2] and also by 
Takabayasi [3], in which the Pauli equation can be interpreted as describing the motion 
of a spinning particle in the sense that well defined individual particle trajectories can 
be calculated along with actual spin vector orientations. According to this approach 
a particle in a ‘spin up’ state with respect to some z axis has a spin vector which 
points along this z direction; the x and y components of the spin vector are not 
undetermined but actually zero. However, if the spin component is measured using a 
Stern-Gerlach apparatus oriented, for example, along the x direction the result ‘up x’ 
and ‘down x’ will be found with equal frequency in this state. A calculation shows 
that in this case the beam bifurcates along a central plane perpendicular to the analysing 
direction as two separating ‘up’ and ‘down’ beams are formed. The outcome in a 
particular case is determined by the uncontrollable actual position of the particle 
relative to this bifurcation plane at the entrance slit to the field. The particle enters 
one beam or  the other as a result of the action of a spin-dependent ‘quantum force’ 
and as the beams separate a ‘quantum torque’ rotates the spin vector to lie either along 
or opposed to the direction of the analysing field. In this way the quantum phenomena 
associated with spin can be understood in a manner closer, in some ways, to our 
customary forms of description than is usually the case, which highlights the essential 
differences between quantum and classical phenomena. Such a description is possible 
since the particle and the spinor wave are assumed to have equal ontological status. 
The quantum force and quantum torque which act on the particle coordinates in this 
model arise when the Pauli equation is recast in pseudoclassical form. Using this 
approach we were able to give a consistent description of the process of the measurement 
of the spin as outlined above, and  of spin superposition in neutron interferometry [4]. 
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In the approach described above the orientation of the spin vector is defined in 
terms of the Euler angles 8, 4 and x, by writing the Pauli two-component spinor as 

$ = R{cos : e  exp[i(d +,y)/2]u++i sin 4 6 exp[-i(4 -,y)/2]u_} (1.1) 

where R is a spatial amplitude and U+ and U- are the ‘spin up’ and ‘spin down’ 
eigenfunctions 

The probability density is 
p = 9’4 = R 2  

and the current 

h e 
j=- ($’V$-(V$’)+)- -Ap 

2mi mc 

yields the velocity 

h e 
2m mc 

U =- ( V X  + cos ev4) -- A 

from which trajectories may be calculated by solving u = x ( t ) .  The spin vector is 
defined to be 

s = ; h($+cr+ /p )  = ; h(sin e sin 4, sin e cos 4, cos e).  (1.2) 
In this paper we extend this causal approach to spin-; systems to embrace a treatment 

of Bohm’s [ 51 version of the Einstein-Podolsky-Rosen (EPR) experiment [6] in which 
spin measurements are carried out on each spin-: particle forming a singlet state. 
Bohm’s proposal has been of great historical importance in the debate on hidden 
variables and non-locality [7], but hitherto the precise nature of the physical process 
that lies behind the ‘non-local’ correlations in the spins of the particles has remained 
unclear. With the aim of clarifying the situation, and in particular refuting some of 
the arbitrary assertions which are made concerning this process, we present here plots 
of the correlated motions of the particles and the evolution of their spin vectors. Our 
conclusion is that whilst the model discussed here is an idealised one, it provides an 
insight into the meaning of ‘non-locality’ in a way that no other interpretation of 
quantum mechanics has managed to do. 

2. Causal approach to the two-body problem with spin 

Consider a system of two spin-; particles of masses m , ,  m2 and charges e , ,  e , ,  
respectively, which are placed in external electromagnetic fields and possibly interact. 
The two-body Pauli equation is 

a* ie 
a t  hC 

ih  - = [ -$ ( V ,  -- A ,  (x, , x,) 

2 h 2  ie 
2m2 hC 

- - ( V - - A ( x1 , x2 )) + Wl + W2 + V ]  $ 

where xl, x, are the coordinates of particles 1 and 2 ,  ($I)= (Lab(xlr x,, t )  is the 
wavefunction of the system (a representation of S U ( 2 ) O S U ( 2 ) ) ,  V =  V ( x , ,  x,, t )  is 
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the total external plus interaction scalar potential, 

WI = W,(x, ,  x*, t )  = 1 1 . 1  HI (XI 3 x2) * U, 

w2 = W2(x1 9 x2, t )  = P 2 H 2 ( X I ,  x2) * U2 

where p l ,  p2 are the magnetic moments of the particles with HI = V I  x A , ,  H2 = V, x A2, 

and U,, U >  are two sets of Pauli matrices which commute and operate independently 
on the spin indices a, b, respectively. 

Writing 

$ab = R e's/h 4 a h  (2.3) 

where R and S are real amplitude and phase functions, respectively, and 4'4 = 1,  we 
may deduce from (2.1) by contracting with 11/' and separating into real and imaginary 
parts a generalised Hamilton-Jacobi equation 

a4 ih4 '  - + i m ,  u:+im2v:+ Q1 + Q2+ HI, + HZs 
aS 
at  a t  
- _  

and a continuity equation 

% + V I  * (pu , )+V2 .  (puJ=O. 
at  

Here p = $'$ = R 2  is the configuration space probability density, 

are the velocities of the particles which contain spin-dependent contributions, 
Q, = -( h2/2m,)VfR/ R ( i  = 1 ,2 )  are the usual quantum potentials which arise in the 
spinless two-body problem, 

i = 1 , 2  (2 .7)  
h2  

2 m, 
HI, =---[V,4' * ~ 1 $ + ( 9 ' ~ 1 4 ) 2 1  

are spin-dependent additions to the quantum potentials, and 

s, = t h4+U,f#J = f hI j tU,$lP i = 1 , 2  (2.8) 

are the vectors which we shall adopt as describing the local spin orientation of each 
particle. The total energy of the system 

is clearly spin dependent, and these equations generally imply a spin-orbit coupling. 
Notice that all the above functions are in general dependent on the coordinates of 
both particles. Thus the trajectories of the particles, defined by the solutions to 

dx,/dt  = U, i = l , 2  (2.10) 

(given the initial positions) depend irreducibly on each other and on the total quantum 
state. It is easy to to see that the trajectories and spin vectors of the two particles will 
only evolve independently when the wavefunction factories: 

(Lab(x1,X2, t)=(Lla(xl,  f ) $ 2 b ( x 2 ,  t )  (2.11) 
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where $,, = RI e'sih&,, +:I#+ = 1, i = 1,2, is given by (1.1) for each i .  In this case the 
quantum potentials Q1 + HI, decompose into a sum of functions, each associated with 
just one of the particles and the spin vectors take the form (1.2) for each i. When 
(2.11) does not hold the spin-dependent quantum potentials act to bring about correla- 
tions in the motions since they give rise to quantum forces and torques which are 
functions of both coordinates. This may be seen explicitly from the equations of 
precession of the spin vectors: 

ds , /d t=  T , + ( 2 p I / h ) H , x s ,  i = 1 , 2  (2.12) 

where TI, i = 1,2, are quantum torques: 

(2.13) 

T 2 k  = [ 1-21 

with XIJ = ( h/2p)+'uIrcr2,+, d l d t  = a /a t  + v 1  V I  + v2 . V z ,  and the equations of transla- 
tional motion of each particle: 

d 4 '  d 4 '  
+ i h  ali4+---alj4 ( d t  d t  

(2.14) 

dv2j m2 - = [ 1-21 d t  

where 

and d 4 l d t  is given by (2.12). 
It is important to emphasise that in the approach proposed here it is possible to 

distinguish the particles in a many-body system by their individual trajectories (includ- 
ing when the particles are identical in the quantum mechanical sense). This means 
that in a singlet state, for which it is usually stated that before measurement the total 
angular momentum is well defined whereas the individual spins are indefinite and that 
after measurement each individual spin is definite but the total spin is indefinite, each 
of the particles does in fact possess a definite (but continuously variable) spin vector 
at all times, both before, during and after measurement. This of course is because the 
orthodox account of the EPR experiment only makes statements concerning the eigen- 
values of operators, with well defined spins only coming into existence as a result of 
'measurement'. As we have seen [ l ] ,  the effect of the measurement is simply to 
continuously transform the value of a quantity which already existed. 
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3. Application to the EPR problem 

The basic set-up is shown in figure 1. A pair of spin-f particles of mass m and magnetic 
moment p are formed at 0 in a simultaneous eigenstate of the spin operator in the z 
direction ( f i / 2 ) ( a Z ,  + az2) and the total spin operator ( f i 2 / 4 ) ( a ,  + a2)', with eigenvalue 
zero. The particles separate in the y direction and pass through Gaussian slits oriented 
so as to produce packets in the directions of the analysing fields of two identical 
Stern-Gerlach devices. Magnet 2 is set to measure the spin in the z direction, and 
magnet 1 has been rotated anticlockwise through an angle 6 about the y axis so that 
it has a gradient in the z' direction. 

At the entrance to the magnets the wavefunction is? 

where f i ( z ; ) ,  f 2 ( z 2 )  are normalised parckets, z :  and z2 are the coordinates of particles 
1 and 2 in the z' and z directions, respectively, and a,, U, = *U,, uZ2 U, = *U*. The 
state (3 .1)  predicts the following well known expectation value for the correlations of 
spins measured in the z, z' directions: 

(azi = -cos 6 ( 3 . 2 )  
and the probabilities of the possible outcomes are given by 

P ( + + )  = P ( - - )  =;sin2 6 / 2 ,  P ( + - )  = P ( - + )  =+cos2 8 / 2 .  (3 .2a )  

In ( 3 . 1 )  we have suppressed the motion in the y direction since this is not relevant 
to the measurement process. We only assume that the particles are sufficiently far 
apart on the y axis so that they do not interact in the usual sense, and so that the 
measuring devices cannot influence one another. 

Figure 1. The arrangement for the Einstein-Podolsky-Rosen experiment. 

t Note that we do not antisymmetrise on the coordinates so that the particles are distinguishable in the 
usual sense. 



4722 C Dewdney, P R Holland and A Kyprianidis 

Equation (3.1) describes a state in which the spin is independent of position and 
the purpose of the Stern-Gerlach devices is to introduce couplings between the spins 
(the measured variables) and the positions (the apparatus coordinates). The effect of 
the impulsive action of the inhomogeneous fields (assumed to act simultaneously) may 
be determined by solving (2.1) in the approximation where the kinetic energy terms 
are neglected. At the exit to each magnet two superposed packets have been formed 
which separate in time according to motion described by the free Pauli equation along 
the directions of the analysing fields. The authors have not found this calculation in 
the literature and the details of our simplified treatment are sketched in the appendix. 

Expanding in terms of products of eigenfunctions of the spin operators being 
measured, the normalised wavefunction at time t after the interaction with the fields is 

$(zi ,  z2, t )  = (u&sl)-’ 

x (sin 4 S exp[ - htA’( z {  + z 2 ) /  MEU*] exp{ -i[2A + ( z ;  + z,)A’/ &a4]} U :U, 

+cos b S  exp[-htA‘(z’, - z2)/msu2] exp[-i(zi -z2)A‘/~u4]u:u- 

-cosid exp[htA’(z{ - Z ~ ) / ~ E ( + ~ ]  exp[i(zi -z2)A‘/eu4]uLv, 

+sin IS  exp[htA’(z:+z,)/mm’] exp{i[2A+(zi +z2)A’/~u4]}uLu-) 

(3.3) 
where s , = ( l / u 2 + i h t / m ) ,  u=constant,  E =  1/u4+(ht /m)* ,  A = p H o T / h ,  A ’ =  
pHA T /  h, Ho is the homogeneous part of the field, HA is the field gradient and T is 
the period of interaction. 

The velocities and spin vectors at t = 0 may be calculated from (2.6), (2.8) and 
(3.1) or (A2) to U, = u2 = s, = s2 = 0. It may appear strange that the particles have zero 
true values of internal angular momentum but it should be borne in mind that in 
quantum mechanics the properties of individuals depend on the state of the whole of 
which they are a part. Each individual spin vector will possess properties different to 
those of the spin vector associated with a single body (which by (1.2) can never be 
zero). Notice in particular that the spins of the particles in each separating packet are 
not determined by either of the addends in the state (3.1), i.e. they are not in an initial 
state in which the spin of one is up (down) and the other is down (up), as one would 
expect in the analogous classical case. 

Immediately after the interaction with the magnets, however, the particles acquire 
non-zero z’ and z components of their velocities and the quantum torques (2.13) act 
to start the particles spinning. At time t we have from (3.3) the density 

p = (27ra2&)-’ exp{-[z12+ ~ : + 2 ( h r A ‘ / m ) ~ ] / ~ u ’ } R  (3.4) 
where 

s2 =sin2~S{exp[2hrA’(z~+ z , ) /m~u~]+exp[-2htA’(z’ ,+  z 2 ) / m ~ u 2 ] }  

+ cos2 tS{exp[2htA’(z’, - z 2 ) / m ~ a 2 ]  + exp[-2htA’( z: - z 2 ) / m ~ a 2 ] }  (3.5) 

and for particle 1 
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S I  =- sin’ fS(exp[-2htAf(zl + z 2 ) / m ~ u 2 ]  -exp[2htA’(z’, + z 2 ) / m ~ u 2 ] }  

1 +cos2fS{exp[-2htA‘(z~ - z 2 ) / m ~ u 2 ]  -exp[2htA‘(zl -z2)/meu2]} 

while for particle 2 

h 
2R sX2=-sin S cos [ e x p ( - 2 h t A ’ ~ ~ / m ~ u ~ ) - e x p ( 2 h t A ’ z j / m s c r ~ ) ]  

(3.8) 

h 
2R 

[exp(-2htA’z; /m~u~) -exp(2htA‘z’,/msu2)] 

1 +cos2 fS{exp[2htA’(zl - z 2 ) / m m 2 ]  -exp[-2htA‘(z: - z2 ) /m~u4]}  

with 

(3.10) 

The components of s1 in the xyz system are easily found from 

s,, = sxi cos S - s,; sin 6 (3.11) 

There are of course no additions to the initial components of the velocities in the y 
direction (which we have ignored) from the impulsive action of the fields. 

The general implications of these results are as follows. As we have said, each 
particle undergoing measurement enters one of the separating packets at the exit to 
the magnet and the quantum torque acts to start the particle rotating. The spin vectors 
do not in general lie along the direction of the magnetic fields but eventually they do 
so, tending towards the values * h / 2  ( O , O ,  1). Which result is obtained depends on 
the positions of both particles in the initial packets. On average the correlation comes 
out to be (3.2) and the probabilities ( 3 . 2 ~ )  are reflected by the relative proportions of 
trajectories which go up or down on leaving the magnets. The velocities clearly depend 
on the spins, as seen in (3.7) and (3.9). 

To gain further insight into this non-local action, let us consider two important 
special cases for which we explicitly plot the particle trajectories and spin vector 
orientations. 

sy, = sy; s,, = s,; sin S + szi cos S. 
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3.1. Measurement on particle 1 only 

The wavefunction in the case where no measurement is performed on particle 2 is 

+ ( z i , z 2 ,  t ) = ( f i a s , ) - l e x p {  - [z :2+z;+(~)’ ] (2e . . ) ‘ )  

(3.12) 

where U: = css f 6v+ - sin f 6 u _ ,  = sin t a u ,  +cos 6 u - ,  which implies that 

(3.13) 
h 

2 0 ’  
s,; =- [exp( -2htA’z’,/ meu’) - exp(2htA’z’,/ mea’)] s,; = sy; = 0 

zih’t 2A’ 
v.;=--- m’e meu4s2; (3.14) 

sx2 = sin as,; &; = 0 s,, = s,; = 0 sz, = -cos 6s,; sz; = -s,j (3.15) 

h’t 
- m2e 

vz, = z2 - (3.16) 

where R’=  [ e x p ( 2 h t A ’ z ~ / m ~ ( 7 - ~ ) + e x p ( - 2 h t A ’ z ‘ , / m e c r ~ ) ] .  
We see from (3.13) and  (3.14) that the behaviour of particle 1 is independent of 

particle 2; the velocity and spins depend only on z: and they take a form similar to 
the expressions obtained for a single free particle passed through a Stern-Gerlach 
device [ l ] ,  whose initial spin vector lies in the x’y’ plane (although in the one-body 
case the spin is never zero). 

In particular the spin vector points along the direction of the field and changes 
continuously from 0 to h /2 ( -h /2 )  if the initial position on the I’ axis is above (below) 
z’ = 0. The fate of particle 2 on the other hand is dependent on the motion of 1. From 
(3.16) it is seen that the trajectory of 2 is unaffected by 1, and we may solve to find 

2 1 / 2  

z2 ( t )  = z2 (0) U’ [ 3 + ( Z )  ] 
i.e. a hyperbola which follows from the natural spread of the wavepacket. The 
component of the spin vector of 2 which lies along the z’ direction however changes 
continuously from zero to a finite value (+ h /2 )  simultaneously with the commencement 
of rotation of 1, and is at all times equal and opposite to the spin of particle 1. The 
spin of 2 thus depends sensitively on the position of particle 1 through the spin vector 
of 1, as can be seen from (3.15), whereas the respective trajectories depend solely on 
the initial positions of the particles and the local environment. 

When the beam containing particle 1 splits at the exit to the magnet and the particle 
enters one or other of the separating packets, the beam containing particle 2 does not 
split-particle 2 remains in the same packet, but now it is rotating about the z axis 
due to the non-local action of the quantum torque (2.13). 
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The sense of rotation is determined by the initial position of particle 1. If particle 
1 is in the upper (lower) half of the bifurcating beam, it will rotate clockwise (anticlock- 
wise) about the z' axis and will be in a spin up  (down) eigenstate of U,.. Particle 2 
will have the opposite sense of rotation regardless of its position. If we subsequently 
pass particle 2 through a Stern-Gerlach device oriented in the z' direction, then we 
will of course obtain the opposite result to that found for particle 1, since all trajectories 
in a spin up  (down) eigenstate join the upper (lower) beam [l]. 

The trajectories and spin vector magnitudes (indicated by the length of the arrow 
which always lies in the z' direction) are shown in figure 2. 

'6, 

f &  

' ' 5  

T 7 6  

4- 

Stern-Ger lach 1 on S t e r n - G e r l a c h  2 of f  

Figure 2. Trajectories and correlated spin vector orientations for two particles initially in 
a singlet state after the impulsive measurement of the z' component of the spin of particle 
1 only. 

3.2. Magnets aligned (6 = 0) 

In this case only the U+ U - ,  U -  U +  terms survive in (3.3) so that s,, = s), = sxz = s,.? = 0,  

h 
2 a  sZI = -sSZ~=-{exp[-2htA'(zl -z2) /m~uZ]-exp[2htA ' (z l  - z 2 ) / m ~ u Z ] }  (3.17) 

and 

z1 h't 2A' h2t  2A' 
mzE mEu4Sz1 (3.18) 

The motion of each particle for any pair of trajectories depends sensitively on the 
choice of both initial positions at the entrance slits to the Stern-Gerlach devices. 
Equation (3.17) shows, however, that the spins always come out to be opposite 
regardless of the initial positions. The results plotted in figure 3 were calculated by 
taking the initial position of particle 1 to be fixed in each case and then finding the 
correlated trajectories which develop for a representative range of initial positions of 
particle 2. When the initial position of particle 1, z I  (0), is chosen to be equal to that 
of particle 2, z2(0), we obtain a bifurcation point. I f  z2(0) < z , (O) ,  then particle 2 has 
a negative velocity and sz2 decreases from 0 to - h / 2  whilst the corresponding particle 
1 has a positive velocity and s,, increases from 0 to h/2.  Analogous correlations are 
found if z 2 ( 0 )  > z1 (0). In figure 4 we illustrate the same phenomenon with a different 
choice of the constant ~ ~ ( 0 ) .  

UZ2 = z2 - -- m 2 E  mEu4s'2. 
U;, =--- 
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n 

Stern-Gerlach 1 on 1 1 S t e r n -  Gerlach 2 on 

Figure 3. Correlated pairs of trajectories and spin vector orientations after the impulsive 
measurement of the spin in the z’ direction on both particles. z,(O) is constant, z2(0) is 
variable. The magnets may in principle be separated by any distance. 

1 Ste rn -  Gerlach 1 on d 

Figure 4. The situation of figure 3 with z,(O) equal to a different constant. 

Returning to the general case ( 6  # 0) it is evident from the above that regardless 
of whether one staggers the measurements in time or performs them simultaneously 
the statistical correlations will come out to be the same. The fate of a particular particle 
however will depend on when the measurements are carried out. Consider, for example, 
the correlated trajectories 3 in the figures. In figure 2 ($3.1) particle 1 will always 
move upward regardless of the initial position of particle 2. In figures 3 and 4 on the 
other hand ( 9  3.2) particle 2 moves up or down depending on the value of ~ ~ ( 0 ) .  The 
identical statistics obtained in simultaneous or staggered measurements result in part 
therefore from quite different evolutions at the level of the individual particles which 
make up an ensemble. The non-local mechanism at work in the two cases is not the 
same, but they cannot be experimentally distinguished. 

4. Resolution of the EPR ‘paradox’ 

We have until now deliberately avoided referring to the EPR experiment as ‘paradoxical’ 
since no problems of logical consistency arise when the problem is formulated in the 
causal interpretation. The conventional reason why the features brought to light by 
EPR are felt to imply a paradox is as follows [8]. 



Non-local Einstein- Podolsky- Rosen spin correlations 4727 

I t  is a straightforward prediction of the quantum formalism that if any component 
of the spin of particle 1 is measured and the result found to be * ( h / 2 ) ,  then it can 
be immediately concluded that the same component of the spin of particle 2 (which 
is not measured) becomes definite and is equal to F( h / 2 ) .  This will be true whatever 
component of particle 1 is measured since the singlet state is rotationally symmetric: 

1 1 - ( U + U -  - U- U ) - - ( U i U L  - U ‘ u : ) .  J2 + - J 2  

Unlike classical physics, it is claimed that only one component of the quantum 
mechanical spin of each particle can have a definite value at a given time-the two 
perpendicular components are indeterminate and are to be thought of as ‘randomly 
fluctuating’. But we are free to measure the spin of particle 1 in any direction we 
choose, and so make definite the spin of particle 2 in any direction. Moreover, this 
choice may be made during the flight of the particles. The paradox then arises in the 
circumstance that particle 2 must somehow ‘know’ in which direction it is to be definite 
and in which it is to be fluctuating. 

Einstein et a1 [ 6 ]  used such an argument to show that quantum mechanics is 
incomplete; there should be an ‘element of reality’ corresponding to the spin of each 
particle since apparently without in any way disturbing one of the particles we can 
predict with certainty the value of its spin in any direction (having performed a 
measurement on the other particle). There is however no way in the usual formalism 
based on wavefunctions and operators to ascribe a simultaneous reality to spin compo- 
ments in perpendicular directions. 

Bohr’s answer [9] was that the form of the experiment and the content of the results 
form an unanalysable whole and that no paradox will arise if we refrain from drawing 
inferences from the results. The choice of different analysing field directions implies 
a series of mutually exclusive experimental arrangements whose details cannot be 
compared with one another. 

The problem may be resolved in a different manner, however, in the causal 
interpretation which adopts Einstein’s view that there is a reality independent of 
measurement and shows that this idea is completely consistent with the quantum 
mechanical formalism. As we have seen in the previous sections of this paper, the 
unjustified assumption in the conventional formulation of the ‘paradox’ outlined above 
is to suppose that if a reality is to be ascribed to entities such as ‘spin’ then this reality 
refers to the eigenvalues of operators, i.e. the dynamical variable is only realised and 
becomes definite (equal to an eigenvalue) on performing a measurement. 

In our approach we suppose that both particles always have well defined trajectories 
and spin angular momenta components in all directions. The interaction of one of 
the particles with the Stern-Gerlach magnet implies the transformation of the wavefunc- 
tion of the entire system, and consequently a change in the total spin-dependent 
quantum potential associated with the two bodies. As we have shown, when particle 
1 interacts with the Stern-Gerlach device, it enters one or other of the emerging 
wavepackets while the quantum torque TI  rotates its spin vector so that it coincides 
with the eigenvalue of the spin operator being measured, and the quantum torque T2 
rotates the spin of particle 2 to an equal and opposite value while the trajectory is 
unaffected. 

The purpose of making simultaneous measurements on both particles is to show 
that these correlations in the particle’s behaviour are brought about by an ‘action at 
a distance’ mechanism. Once the initial positions of the particles have been fixed, the 
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outcome of the experiment is uniquely determined. The non-local spin-dependent 
quantum potential associated with the total quantum state rotates the spin vectors, as 
in the case of measurement on only one particle, and the total quantum potential 
ensures that the positions of the two particles are correlated in the required way. 
Changing the relative orientation of the magnets changes the total quantum state and 
hence implies different correlated motions. It is in this way that we incorporate the 
insights of Bohr concerning this process, but we also go on to explain how the 
correlations come about. 

Although there is no classical interaction between the particles, they cannot be said 
to be non-interacting since they are tied by the quantum potential. Thus although we 
ascribe independent ‘elements of reality’ to individual quantum systems, the criterion 
for the existence of an independent ‘element of reality’ proposed by EPR [6] (if  without 
in any way disturbing a system we can predict with probability unity the value of a 
dynamical quantity, then that quantity is an element of reality) is not applicable in 
the causal interpretation. The act of measurement performed on one particle does 
indeed bring about a disturbance in the properties of the other particle, via the quantum 
potential. 

Note that in bringing about these correlations, the quantum potential and quantum 
torque do not transfer information. We do not know what result would have been 
obtained for particle 2 had we not made a measurement on particle 1. There is therefore 
no conflict between this form of non-locality and the relativistic requirement that no 
signal be transmitted faster than the speed of light. Nevertheless, Einstein-Podolsky- 
Rosen-type correlations in the properties of distantly separated systems may be felt to 
contradict at least the spirit of relativity which apparently requires actions only to be 
transmitted locally in order not to conflict with causality (i.e. that effects follow causes). 
A detailed treatment of this problem using the techniques of modern predictive 
mechanics shows, however, that no such contradiction arises [ 101. Remarkably theories 
involving ‘action at a distance’ may be compatible with the principles of relativity if 
they satisfy certain constraints. 

5. Bell’s inequality 

The preceding analysis enables us to see clearly the manner in which the assumptions 
made by Bell [7] in his derivation of an inequality that any local hidden variables 
theory must apparently satisfy are violated in the causal interpretation. In discussing 
the EPR spin experiment Bell supposed that the results of the two spin measurements 
are determined completely by a set of hidden variables A and made two crucial 
assumptions which he claimed should be satisfied by a local hidden variables theory. 

( i )  The result A of measuring U, * a on particle 1 is determined solely by a and 
A, and the result B of measuring uz - b on particle 2 is determined solely by b and A, 
where a and b are unit vectors with a - b = cos 6. Thus 

B = B ( b ,  A )  = *1. A = A(  a, A ) = * 1 

Possibilities such as A = A(a,  b, A 1, B = B ( a ,  b, A )  are excluded. 

on A :  
(ii) The normalised probability distribution of the hidden variables depends only 

P = P ( A ) .  

Possibilities such as p = p ( A ,  a, b )  are excluded. 
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The first assumption was considered by Bell to be more important than the second 

From assumptions (i) and  ( i i )  and the definition of the expectation value of the 
in characterising the requirement of locality ( ( i i )  was in fact only tacitly assumed). 

product of the results A and E, 

P ( a , b ) =  dAp(A)A(a,A)B(b,A) (5.1) l 
Bell deduced the inequality which is to be satisfied by the functions (5.1). This of 
course is violated by quantum mechanics; one cannot recover the result (3.2) from (5.1). 

We now consider to what extent assumptions (i)  and (ii) are valid in the causal 
interpretation. The hidden variables A are here the particle positions xl, x2 (the internal 
orientation spin vectors sl, s2 along the trajectories are determined by the positions 
and  the wavefunction). In the case of staggered measurements, it follows from 5 3.1 
that A = A(x, , a )  and B = B ( x ,  , x2, a * b). When the measurements are performed simul- 
taneously, it follows from (3.6) and (3.8) that which of the eventual results * t h / 2  are 
obtained for s.; and s,, is determined solely by the initial positions of both particles 
and  by 6, i.e. A = A(x,,  x2, a - b), B = B ( x , ,  x2, a b). Thus assumption (i)  is not valid 
in either case. Neither is assumption (ii) satisfied. In the causal interpretation the 
probability distribution of positions is derived from the quantum mechanical wavefunc- 
tion which is a function of all the contributing parts of the process, including the 
orientations of the magnets (cf (3.3)). Therefore, in the causal interpretation, (5.1) 
should be modified to be 

P( U,  b) = (5.2) 

from which one cannot deduce Bell’s inequality. Using the probabilities ( 3 . 2 ~ )  in ( 5 . 2 )  
we recover the quantum mechanical result (3.2) 

d3xI d3x2 p ( XI , ~ 2 ,  U * b)  A( XI , ~ 2 ,  U ’ b) B( XI , ~ 2 ,  U * b )  I 
P ( a ,  b ) = i s i n 2  S / 2 S i s i n 2  612-;cos2 6 /2 - i cos2  612 

= -cos 6. 

Bell’s inequality is therefore violated because the hidden variables are non-locally 
interconnected by the quantum potential derived from the total quantum state. It is 
in this sense that the causal interpretation implies non-local correlations in the proper- 
ties of distantly separated systems. 

6. Conclusion 

We have shown here how the results of the EPR experiment can be accounted for in 
terms of a reality in which well defined and continuously variable quantities evolve in 
a deterministic manner according to the equations of motion of the causal interpretation. 
Our analysis illustrates that the fundamentally new feature of matter introduced by 
the quantum theory is wholeness, in which the behaviour of an  individual particle is 
irreducibly connected with its context (expressed through the wavefunction). This 
arises most strikingly in the many-body case through non-local connections. The 
interactions regarded as measurements are those in which a particular variable of a 
‘measured’ system (which already exists prior to the measurement) becomes correlated 
with a particular apparatus coordinate according to deterministic laws of evolution of 
the whole undivided system plus apparatus. In this sense the elements of reality of 
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the quantum theory are essentially different to those of classical physics. Although 
we use the same terms (position, momentum, kinetic and potential energies) to describe 
a particle’s motion, the individual and its relation with these attributes is not the same 
as in the classical domain. 

Having established this feature of the quantum potential model, a further point to 
consider is the conditions under which correlations in  the properties of distantly 
separated systems can be generally expected to occur. Non-locality arises when the 
wavefunction is not factorisable, but this is not a sufficient condition since under 
certain circumstances it may effectively factorise. For example, for a two-particle 
system in a harmonic oscillator potential obeying Bose-Einstein or Fermi-Dirac 
statistics, the particle motions are only correlated when the two wavepackets (each 
containing one particle) overlap appreciably [ 1 I]. When the particles are distantly 
separated (i.e. their packets do not overlap appreciably) they behave independently. 
A similar situation arises in our treatment of the Em-Bohm case. The initial singlet 
state (3.1) describes two independently evolving particle motions. The quantum poten- 
tials Qi, i = 1,2, each depend on only one of the coordinates, and the spin-dependent 
additions (2.7) vanish. The non-local action of the quantum potential comes into 
existence only when a measurement is performed. It is probable that this is a feature 
specific to the idealised model discussed here. A more detailed theory of the spin 
correlation experiment is currently being developed which introduces internal angle 
degrees of freedom as independent variables in addition to the position coordinates. 
The theory based on the Pauli equation given above is recovered from this more general 
theory when one averages over the internal variables. Details will be published shortly. 

Finally, it should be pointed out that although the recent experiments [ 121 testing 
the predictions of quantum mechanics in this case have been carried out on the 
polarisation states of photons, the principles involved in a causal treatment are the 
same as those outlined above. 
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Appendix 

In order to obtain (3.3) we first derive the effect of the impulsive measurements by 
solving 

alC, 
a t  

i h - = ( W ,  + W,)g  

where (2.2) reduces to 

W , = p ( H o + z ;  H;)U,;  W2 = F(&+ Z 2  HA)u2, 
where a,. = a, cos 6 - ux sin 6, z’ = -x sin 6 + z cos 6, Ho is the uniform field and HA 
is the field gradient in each Stern-Gerlach magnet. We ignore the effect of the fields 
in the x and x’ directions which are necessarily present, as is easily seen from Maxwell’s 
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equations [13]. The initial wavefunction is (3.1). Since magnet 1 is not oriented in 
the z direction we must expand the solution to ( A l )  in terms of all of the four basis 
functions: 

*(z!, z2, t ) =  1 $ab(z:, z 2 ,  t ) u a u b  
a , b = *  

where g Z , u * = * u + ,  crZ2u+=*u, .  Substituting this expression in ( A l )  it is easy to 
find second-order differential equations satisfied by each G a b .  Expressing the solution 
in terms of the basis functions which correspond to the possible outcomes of the 
experiment, we find 

1 + ( z ’1 , z 2 ,  T )  = - f i  ( z ;)f2 ( z2) (sin 4 S exp{ -i[ 2A + ( z ’, + z2) A’]} U v- 
J 2  

+cos i 8  exp[-i(z~+z,)A’]u:v--cos i S  exp[i(z; - z2)A’]uLv, 

+ sin i 6 exp{i[2A + (z; + z2)A’]>ul U-) (A21 

where U,; U: = *U:, A = p H o  TI h, A’ = pHb T /  h and T is the time that each particle 
spends in the field. 

The subsequent motion proceeds according to the free equation 

with (A2) as initial wavefunction. To find the solution to (A3) we first Fourier analyse 
the initial packets f, ,f2. The coefficient of U: U ,  in (A2), say, is then 

where g, ( k i ) ,  g2( k,) are normalised packets centred around k’, = 0, k, = 0 respectively. 
As time passes, the (k!, k,)th Fourier component picks up  a factor exp[-i(wk;+ w k , ) t ]  
where 

(A4) thus becomes 

+ ( k , - A ’ ) ~ ~ - ( h t / 2 m ) ( k ~ - A ’ ) ~ ] }  dk’, dk,. 

The centre of the configuration space wavepacket occurs where the phase has an  
extremum, i.e. where 

zi = -htA’/m z,=-htA’/m 

so that the centres of the wavepackets emerging from the magnets move in the same 
direction (relative to the local analysing fields), as is to be expected from the U: U, 
part of the solution. The other three terms in (A3) develop similarly and  describe the 
other possible combinations for the outcome of the experiment. Each of the particles 
enter one or the other packets at the exits to the magnets depending on their initial 
positions in the packets at  the entrances to the magnets. It is assumed that the momenta 
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imparted to the packets by the inhomogeneous fields are sufficiently great that the 
spreading of the packets will not mask the spin-dependent deflection and so a classical 
separation of the two beams emerging from each magnet is ensured. 

The final states of each of the apparatuses (packet coordinates) are thus non- 
overlapping and those packets which the particles do not enter can be dropped from 
further attention. The measurement is complete when devices are placed beyond the 
magnets to detect which beams the particles actually entered. This irreversible stage 
of the process merely tells us what has already happened and there is no need to 
invoke the ‘wavefunction collapse’ hypothesis. 

The final step in deriving (3.3) is to substitute explicit expressions for the packets 
g , ,  g, in the four terms of the form (A4). Writing 

performing the integrations and rearranging, we deduce (3.3). 
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