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A Uniqueness Theorem for ‘No Collapse’ 
Interpretations of Quantum Mechanics 

Jeffrey Bub* and Rob Cliftont 

We prove a uniqueness theorem showing that, subject to certain natural con- 
straints, all ‘no collapse’ interpretations of quantum mechanics can be uniquely 
characterized and reduced to the choice of a particular preferred observable as 
determinate (definite, sharp). We show how certain versions of the modal 
interpretation, Bohm’s ‘causal’ interpretation, Bohr’s complementarity interpret- 
ation, and the orthodox (Dirac-von Neumann) interpretation without the pro- 
jection postulate can be recovered from the theorem. Bohr’s complementarity and 
Einstein’s realism appear as two quite different proposals for selecting the 
preferred determinate observable-ither settled pragmatically by what we choose 
to observe, or fixed once and for all, as the Einsteinian realist would require, in 
which case the preferred observable is a ‘beable’ in Bell’s sense, as in Bohm’s 
interpretation (where the preferred observable is position in configuration space). 
Copyright 0 1996 Elsevier Science Ltd. 

1. The Interpretation Problem 

On the orthodox (Dirac-von Neumann) interpretation’ of quantum mechanics, 
an observable has a determinate (definite, sharp) value for a system in a given 
quantum state if and only if the state is an eigenstate of the observable. So, the 
orthodox interpretation selects a particular set of observables that have 
determinate values in a given quantum state; equivalently, a particular set of 
idempotent observables or propositions, represented by projection operators, 
that have determinate truth values. If the quantum state is represented by a ray 
or l-dimensional projection operator e spanned by the unit vector le), these are 
the propositions p such that e<p or e_<pl (where the relation ‘ I ’ denotes 
subspace inclusion, or the corresponding relation for projection operators, and 
pl denotes the subspace orthogonal to p). 
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The orthodox interpretation involves a well-known measurement problem 
(see Section 3), which Dirac and von Neumann resolve formally by invoking a 
projection postulate2 that characterizes the ‘collapse’ or projection of the 
quantum state of a system onto an eigenstate of the measured observable. 
Dynamical ‘collapse’ interpretations of quantum mechanics3 modify the uni- 
tary, Schrodinger dynamics of the theory to achieve the required state evolution 
for both measurement and non-measurement interactions, while retaining the 

orthodox criterion for determinateness. 
‘No collapse’ interpretations avoid the measurement problem by selecting 

other sets of observables as determinate for a system in a given quantum state. 
For example, certain versions of the ‘modal’ interpretation4 exploit the polar 
decomposition theorem to select a preferred set of determinate observables for 
a system S as a subsystem of a composite system S+S* in a state eE H@H*. 

Bohm’s ‘causal’ interpretation5 selects position in configuration space as a 
preferred always determinate observable for any quantum state, and certain 
other observables are selected as inheriting determinate status at a given time 
from this preferred determinate observable and the state at that time. Bohr’s 
complementarity interpretation6 selects as determinate an observable associated 
with an individual quantum phenomenon manifested in a measurement inter- 
action involving a specific classically describable experimental arrangement, 
and certain other observables inherit determinate status from this observable 
and the quantum state. We discuss these interpretations and the orthodox 
interpretation in Section 3. 

There are restrictions on what sets of observables can be taken as simul- 
taneously determinate without contradiction, if the attribution of determinate 
values to observables is required to satisfy certain constraints. The ‘no-go’ 
theorems for ‘hidden variables’ underlying the quantum statistics provide a 

‘See Dirac, op. cit., p. 36; and von Neumann, op. cif., pp. 351 and 418. 
3E.g. D. Bohm and J. Bub, ‘A Proposed Solution of the Measurement Problem in Quantum 

Mechanics by a Hidden Variable Theory’, Reviews of Modern Physics 38 (1966), 47&469; G. C. 
Ghirardi, A. Rimini and T. Weber, ‘Unified Dynamics for Microscopic and Macroscopic Systems’, 
Physical Review D34 (1966), 47&491. 

4The idea of a modal interpretation of quantum mechanics was first introduced by van Fraassen. 
[B. van Fraassen, ‘Hidden Variables and the Modal Interpretation of Quantum Statistics’, Synrhese 
42 (1979) 155-165; ‘A Modal Interpretation of Quantum Mechanics’, in E. Beltrametti and B. van 
Fraassen (eds), Current Issues in Quantum Logic (Singapore: World Scientific, 1981), pp. 229-258. 
See also B. van Fraassen, Quantum Mechanics: An Empiricist View (Oxford: Oxford University 
Press, 1991)]. We have in mind here specifically the interpretations developed by Kochen and by 
Dieks. IS. Kochen, ‘A New Interpretation of Quantum Mechanics’. in P. Lahti. and P. Mittelstaedt 
(eds), symposium on the Four&ions of Modern Physics (Singapore: World Scientific, 1985) 
pp. 151-169; D. Dieks, ‘Quantum Mechanics Without the Projection Postulate and Its Realistic 
Interpretation’, Foundations of Physics 19 (1989), 1397-1423; D. Dieks, ‘Modal Interpretation of 
Quantum Mechanics, Measurements, and Macroscopic Behavior’, Physical Review A49 (1994). 
229C2300.] 

‘D. Bohm, ‘A Suggested Interpretation of Quantum Theory in Terms of ‘Hidden Variables’: 
Parts I and II’, Physical Review 85 (1952) 166179, 18&193. Different formulations of Bohm’s 
theory treat observables such as spin differently. We discuss these differences in Section 3. 

6N. Bohr, Atomic Physics and Human Knowledge (New York: Wiley, 1958). 
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series of such results. So, in fact, the options for a ‘no collapse’ interpretation 
of quantum mechanics in the sense we have in mind are rather limited. We 
begin with a brief review of some of these limiting results. 

The constraint imposed by the Kochen and Specker theorem’ requires that 
the values assigned to a set of mutually compatible observables, represented by 
pairwise commuting self-adjoint operators, should preserve the functional 
relations satisfied by these observables. For example, the constraint requires 
that the value assigned to an observable A should be the square of the value 
assigned to an observable B, if A = B2. With sums and products defined for 
mutually compatible observables only, the observables of a quantum mechani- 
cal system form a partial algebra, and the idempotent observables form a 
partial Boolean algebra. Kochen and Specker show that a necessary condition 
for the assignment of values to all the observables of a quantum mechanical 
system, in such a way as to satisfy the functional relationship constraint, is the 
existence of an embedding of the partial algebra of observables into a 
commutative algebra; equivalently, the embedding of the partial Boolean 
algebra of idempotent observables into a Boolean algebra. A necessary and 
sufficient condition for the existence of an embedding of a partial Boolean 
algebra into a Boolean algebra is that, for every pair of distinct elements p. q in 
the partial Boolean algebra, there exists a homomorphism h onto the 2-element 
Boolean algebra (0, 1} such that &)#h(q). 

As Kochen and Specker show, there are no 2-valued homomorphisms on the 
partial Boolean algebra of projection operators on a Hilbert space of three or 
more dimensions (much less any embeddings). For the homomorphism condi- 
tion implies that for every orthogonal n-tuple of l-dimensional projection 
operators or corresponding rays in H,,, one projection operator or ray is 
mapped onto 1 (‘true’) and the remaining n - 1 projection operators or rays are 
mapped onto 0 (‘false’). And this is shown to be impossible for the finite set of 
orthogonal triples of rays that can be constructed from 117 appropriately 
chosen rays in H3: any assignment of 1s and OS to this set of orthogonal triples 
satisfying the homomorphism condition involves a contradiction. 

Now, an observable A can be compatible with an observable B and also with 
an observable C, while B and C are incompatible (represented by non- 
commuting operators). A and B will be representable as functions of an 
observable X, while A and C will be representable as functions of an observable 
Y, incompatible with X. If A denotes an observable of a system S, and B and 
C denote incompatible observables of a system S’, space-like separated from S, 
then the functional relationship constraint, that the value of A as a function of 
X should be the same as the value of A as a function of Y, becomes a locality 

‘S. Kochen and E. P. Specker, ‘The Problem of Hidden Variables in Quantum Mechanics’, 
Journal of Mathematics and Mechanics 17 (1967), 59-87. 
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condition. Bell argued* that the general functional relationship constraint 
cannot be justified physically, but this weaker locality condition can. Bell’s 
theorem9 shows that the locality condition cannot be satisfied in general in a 
Hilbert space of four or more dimensions: there are sets of observables for 
which value assignments satisfying the locality condition are inconsistent 
with the quantum statistics. [More recent versions of Bell’s theorem, e.g. 
Greenberger, Horne and Zeilinger (GHZ),rO do not require statistical 

arguments, or minimize the statistics needed, e.g. Hardy’*]. 
Several authors have considered the problem of constructing the smallest set 

of observables that cannot be assigned values in such a way as to satisfy the 
functional relationship or locality constraints. Kochen and Conway have 
reduced the number of rays in H3 required to generate a contradiction from 
value assignments satisfying the Kochen-Specker homomorphism condition 
from 117 to 31 .I2 Peres has shown how to derive a contradiction for a more 
symmetrical set of 33 rays in H3, and for 24 rays in H4.13 Kernaghan has 
reduced Peres’ 24 rays to 20.14 Clifton has an eight ray Kochen and Specker 
argument in H3 (but the proof requires quantum statistics to derive a 
contradiction). l5 Mermin proves a version of the Kochen and Specker theorem 
for nine observables in H4, and a version of Bell’s theorem (the GHZ version) 
for ten observables in H8.16 There are related results by Penrose and others.17 

The question of how small we can make the set of observables and still 
generate a Kochen-Specker contradiction is important in revealing structural 

8J. S. Bell, ‘On the Problem of Hidden Variables in Quantum Mechanics’, Reviews of Modern 
Physics 38 (1966), 447-415. Reprinted in Speakable and Unspeakable in Quantum Mechanics 
(Cambridge: Cambridge University Press, 1987). 

9J. S. Bell, ‘On the Einstein-Podolsky-Rosen Paradox’, Physics 1 (1964), 195-200. Reprinted in 
Speakable and Unspeakable in Quantum Mechanics, op. cit. Note that this article, published two 
years before the 1966 review article, was actually written after the review article. 

“D M Greenberger, M. A. Home and A. Z&linger, ‘Going Beyond Bell’s Theorem’, in M. 
Kafatos (ed.), Bell’s Theorem, Quantum Theory. and Conceptions of the Universe (Dordrecht: 
Kluwer, 1989) pp. 73-76. - 

“L Hardy ‘Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Theories’, 
Phvsical Rev& Letters 68 (1992). 2981-2984. 

“The proof is unpublished. For a reference, see A. Peres, Quantum Theory: Concepts and 
Methods (Dordrecht: Kluwer, 1993), p. 197. 

r3A. Peres, op. cit., Chap. I. 
14M Kernaghan ‘Bell-Kochen-Specker Theorem with 20 Vectors’, Journal ofphysics A: Math. 

Gen. 2; (1994), LSi9. 
“R Clifton ‘Getting Contextual and Nonlocal Elements of Reality the Easy Way’, American 

Journal of Ph&s 61 (1993), 443447. 
16N D Mermin, ‘Hidden Variables and the Two Theorems of John Bell’, Reviews of Modern . 

Physics 65 (1993), 803-815. Note that the Mermin proofs, which are conceptually very simple, are 
not nearly so economical as the Peres proofs in terms of the number of rays. 

“See H. Brown, ‘Bell’s Other Theorem and its Connections with Nonlocality. Part I’, in A. van 
der Merwe, F. Seileri and G. Tarozzi (eds), Bell’s Theorem and the Foundations of Modern Physics 
(Singapore: World Scientific, 1992), pp. 104-I 16 for an interesting discussion of ‘no-go’ theorems, 
especially the Mermin proofs, and Peres, op. cit., p. 212, for an account of Penrose’s 40-ray proof 
for a spin-3/2 system. See also J. Zimba and R. Penrose, ‘On Bell Non-Locality Without 
Probabilities: More Curious Geometry’, Studies in History and Philosophy of Modern Physics 24 
(1993), 697-720. 



‘No Collapse’ Interpretations of Quantum Mechanics 185 

features of Hilbert space, but of no immediate significance for a ‘no collapse’ 
interpretation of quantum mechanics. The relevant question in a sense concerns 

the converse issue. To provide a ‘no collapse’ interpretation of quantum 
mechanics in the sense we have in mind, we want to know how large we can take 
the set of determinate observables without generating a Kochen-Specker 
contradiction, i.e. we are interested in the maximal sets of observables that can 
be taken as having determinate (but perhaps unknown) values for a given 
quantum state, subject to the functional relationship constraint, or the maximal 
sets of propositions that can be taken as having determinate truth values, where 
a truth-value assignment is defined by a 2-valued homomorphism. (As we show 
below, even the orthodox interpretation selects such a maximal set.) 

More precisely, the projection operators (or corresponding Hilbert space 
subspaces) of a quantum mechanical system form a lattice L that can be taken 
as representing the lattice of yes-no experiments or propositions pertaining to 
the system. We know that we cannot assign truth values to all the propositions 
in L in such a way as to satisfy the functional relationship constraint, or even 

the weaker locality condition, for all observables generated as spectral measures 
over these propositions. That is, we cannot take all the propositions in L as 
determinately true or false if truth values are assigned subject to these 
constraints. So the probabilities defined by the quantum state cannot be 
interpreted epistemically and represented as measures over the different poss- 
ible truth value assignments to all the propositions in L. But we also know that 

any single observable can be taken as determinate for any quantum state (since 
the propositions associated with an observable generate a Boolean algebra), so 
we may suppose that fixing a quantum state represented by a ray e in Hand an 
arbitrary preferred observable R as determinate places restrictions on what 
propositions can be taken as determinate for e in addition to R-propositions. 

The natural question for a ‘no collapse’ interpretation of quantum mechanics 
would then appear to be: What are the maximal sublattices D(e,R) of L to 
which truth values can be assigned, where each assignment of truth values is 
defined by a 2-valued homomorphism on D(e,R), and the probabilities defined 
by e for mutually compatible sets of propositions in D(e,R) can be represented 
as measures over the different possible truth value assignments to D(e,R)? As a 
further constraint, it seems appropriate to require that D(e,R) is invariant under 
lattice automorphisms that preserve e and R (so that D(e,R) is genuinely 
selected by e and R, and the lattice structure of H), and that D(e,R) is unaffected 
if the quantum system S is regarded as a subsystem of a composite system S+s’, 
where S is not ‘entangled’ with s’. We shall refer to these sublattices as the 
‘determinate’ sublattices of L. 

If the aim is to exclude determinate values for observables (perhaps fixed by 
underlying ‘hidden variables’), i.e. to prove a ‘no-go’ theorem, then the 
constraints on values should be as weak as possible. For our problem, however. 
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we are interested in characterizing the maximal sublattices of L that allow an 
interpretation of the associated observables as determinate for a given quantum 
state. The constraints we are thereby led to impose reflect, roughly, the 
strongest ‘classicality’ conditions we can get away with, consistent with such an 
interpretation. So we require that D(e,R) is a sublattice of L (rather than a 
partial Boolean subalgebra, in which operations corresponding to the conjunc- 
tion and disjunction of propositions are defined only for compatible proposi- 
tions represented by commuting projection operators), and that the possible 
truth value assignments are defined by 2-valued lattice homomorphisms (rather 
than 2-valued partial Boolean algebra homomorphisms, i.e. maps onto {O,l } 

that reduce to 2-valued lattice homomorphisms only on each Boolean sub- 
algebra of D(e,R)). 

Note that the problem of characterizing the maximal sets of observables or 
propositions that can be taken as (simultaneously) determinate, without 
generating a Kochen-Specker contradiction, is not well-defined unless we 

impose constraints on the sets-there are clearly many different infinite sets of 
propositions that can be assigned determinate truth values without contradic- 
tion in this sense. The problem is only interesting relative to the requirement 
that a maximal set of determinate propositions is an extension of some 
physically significant algebraic structure of determinate propositions. Since the 
dynamical variables in classical mechanics are all simultaneously determinate, 
and any single observable in quantum mechanics can be taken as determinate, 
our proposal is to consider what part of the non-Boolean lattice of quantum 
propositions can be added to the Boolean algebra of propositions defined by 
the spectral measure of a particular quantum mechanical observable R, for a 
given quantum state e, before this extended structure becomes too ‘large’ to 
support sufficiently many truth value assignments, defined by 2-valued homo- 
morphisms, to generate the quantum statistics for the propositions in the 
extended structure as measures over these different truth value assignments. 

In the following section, we prove that the determinate sublattices D(e,R) are 
uniquely characterized as follows: I8 In an n-dimensional Hilbert space H,, 

suppose R has m In distinct eigenspaces ri and the rays e, = (evril)Arj, i = l,..., 
klm, are the non-zero projections of the state e onto these eigenspaces. The 
determinate sublattice D(e,R) of L is then the sublattice L,,e,,...e generated by 
the k orthogonal rays e, and all the rays in the subspace (i,lve,2v...ve,)’ 
orthogonal to the k-dimensional subspace spanned by the e,. Le,e,,,.r can 
also be characterized as {e,, i = l,... k}‘, the cornmutant in L of e,, i A i,.?.k, or 

as (p: e,Ip or e,sp’, i = l,... k}. 

“The uniqueness theorem supersedes earlier related results by one of us. See J. Bub, ‘Quantum 
Mechanics Without the Projection Postulate’, Foundations of Physics 22 (1992), 737-754; J. Bub, 
‘On the Structure of Quanta1 Proposition Systems’, Foundations ofPhysics 24 (1994), 1261Ll280; J. 
Bub, ‘How to Interpret Quantum Mechanics’, Erkenntnis 41 (1994), 253-273. 
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Pbically~ L,, e, +, contains all those projections with values strictly corre- 
lated to the valued of R when the system is in the state e. We note that the full 

set of (not necessarily idempotent) observables associated with L, e, ,.,e includes 
any observable whose eigenspaces are spanned by rays in L,+, ,,.b : The set of 
maximal observables includes any maximal observable with i kigenvectors in 
the directions e,, i = l,..., k. 

BelLI and also Bohm and Bub,20 objected to the Jauch and Piron ‘no-go’ 
theorem,21 which required that a truth value assignment h to the lattice of 
quantum propositions (equivalently, the probabilities assigned by dispersion- 
free states) should satisfy the constraint (a consequence of axiom 4” in their 
numbering) that 

h(pr\q) = 1 if h(p) = h(q) = 1 

for any propositions p, q (even incompatible propositions represented by 

non-commuting projection operators). To reproduce the quantum statistics, the 
constraint should be required to hold only for expectation values generated by 
distributions over the hidden variables corresponding to quantum states, but 
not necessarily for arbitrary hidden variable distributions (in particular, not for 
the truth value assignments themselves). 

Now, there exist 2-valued lattice homomorphisms on our determinate 
sublattices L,,, ,,,,_ e , so axiom 4” holds for these sublattices. The assumption that 
fails is Jauch and Piron’s axiom 5, which requires that any proposition not 
equal to the null proposition is assigned the value 1 (i.e. ‘true’) by some 
dispersion-free state. This is certainly a reasonable requirement on the full 
lattice L: if a proposition is assigned the value 0 by every dispersion-free state, 
it will have zero probability for every quantum state (represented as a measure 
over dispersion-free states), hence will be orthogonal to every quantum state, 
and so can only be the null proposition. However, a similar argument does not 
apply to interpretations that select proper sublattices of L. In fact, there 

are propositions in L+,,,, not equal to the null proposition (propositions in 

(e,.,ve,2v...ve,l)L) that have’“zero probability in the state e and are assigned the 
value 0 by all 2-valued homomorphisms on L,,,,,.,, . The reason this is possible 

is that L, e,,...e is always a proper sublattice of L and is constructed on the basis 
of what the particular state e of the system is. So the Jauch and Piron argument 
for axiom 5 does not apply to the sublattices L,,,,,.,,,,. 

Similarly, the Kochen and Specker argument that the existence of hidden 
variables requires a Boolean embedding of the full partial Boolean algebra of 
idempotent observables of a quantum mechanical system breaks down. If the 

19J S Bell ‘On the Problem of Hidden Variables in Quantum Mechanics’, op. cit. .. 1 
“D. Bohm and J. Bub, ‘A Refutation of the Proof by Jauch and Piron that Hidden Variables 

Can Be Excluded in Quantum Mechanics’, Reviews of Modern Physics 38 (1966), 470-475. 
l’J. M. Jauch and C. Piron, ‘Can Hidden Variables be Excluded in Quantum Mechanics?‘. 

Helvetica Physica Acta 36 (1963), 827-837. 
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lattice operations in L =,=, ,,.e are confined to compatible elements (correspond- 
ing to commuting proj’e&n operators), then L, e, ,.,e can be regarded as a 
partial Boolean algebra. There exist 2-valued parti&‘Biolean homomorphisms 

on L, e, ...e,,P in fact sufficiently many to generate the probabilities defined by the 
quant& state for the propositions in Le+,,, , but insufficiently many to 
provide an embedding of L,+, ...e 

the determinate sublattices ie,:, ,Ib 

into a Booie’a;algebra. Our proposal is that 
, for all R, provide a class of perfectly viable 

‘no collapse’ interpretations bf diantum mechanics, in which the functional 
relationship constraint is satisfied without a Boolean embedding. 

In the final section, we show that the determinate sublattice of a composite 
system S+M (representing a system and a measuring instrument), for the 
‘entangled’ state of S+M arising dynamically from a unitary evolution repre- 
senting a quantum mechanical measurement interaction, contains the proposi- 
tions corresponding to the S-observable correlated with the pointer observable 
of M, if the pointer observable (or some observable correlated with the pointer 
observable) is taken as the preferred determinate observable R. Note that this 
determinate sublattice of S+M is derived without any reference to measurement 

as an unanalyzed operation, i.e. this natural description of the measurement 
process falls out as just a special instance of the linear Schrijdinger quantum 
dynamics, without requiring the projection or ‘collapse’ of the quantum state 
to validate the determinateness of measured values, as in the orthodox 
interpretation. This is perhaps evident from the statement of the uniqueness 
theorem: L,, ,,,e is generated from the non-zero Liiders projections of the 
quantum staii e’bnto the eigenspaces of R. Different choices for the preferred 
determinate observable R correspond to different ‘no collapse’ interpretations 
of quantum mechanics. We shall illustrate this with the orthodox interpretation 
(without the projection postulate), the modal interpretation (in the versions 
developed by Kochen and by Dieks), Bohm’s ‘causal’ interpretation (one 
natural way to develop an Einsteinian realism within quantum mechanics), and 
Bohr’s complementarity interpretation. But first we turn to the theorem. 

2. The Uniqueness Theorem 

We begin with some definitions: Consider a composite quantum mechanical 
system s^* = S+S‘ represented on a Hilbert space H** = H@H*. Suppose the 
state of S** is represented by a ray e**E H**. Let R,R* and R** denote (preferred) 
observables of S, S’ and s”’ represented by self-adjoint operators defined on 
the Hilbert spaces H, fl and fl’, respectively. 

Definition 1. We define a compound observable, denoted by R&R*, as any 
SD*-observable on H* whose eigenspaces are the tensor products of the 
eigenspaces of R and R*. So the number of distinct eigenvalues of R&R* is equal 
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to the product of the number of distinct eigenvalues of R and the number of 

distinct eigenvalues of R*. (For example, if H and H’ are both 2-dimensional 
and R and R* each have two distinct eigenvalues, f 1, then R&R* is an 
observable in fl* = H@& with four distinct eigenvalues corresponding to four 
1 -dimensional eigenspaces, while the tensor product R@R* has only two distinct 
eigenvalues, f 1, corresponding to two 2-dimensional eigenspaces.) 

Definition 2. We define an observable induced by R** on the subsystem S as an 
observable R on H that exists if and only if there is an observable R* defined on 
H* such that R** = R&R*. (It follows that R is unique up to a choice of 
eigenvalues, i.e. different induced observables share the same set of 
eigenspaces.) 

Definition 3. We define the state induced by e** on the subsystem S as the state 
represented by the ray eE H that exists if and only if there is a ray e*E H* such 
that e** = e@e*. 

Definition 4. We define the restriction of D**(e**,R**) to H, denoted by 

D(e**,R**), as the set of all projection operators p on H such that 
P&E D**(e**,R**), where r” is the identity operator on H’. 

Theorem 1 (Uniqueness Theorem) 

Consider a (pure) quantum state represented by a ray e in an n-dimensional 
Hilbert space H and an observable R with m <n distinct eigenspaces rP Let 
e, = (evri’)Ari, i = I, . . . . k zz m, denote the non-zero projections of the ray e 
onto the eigenspaces ri. Then D(e,R) = L, e, .,.= I 2 .‘A is the unique maximal sublattice 
of L(H) satisfying the following four conditions: 

(1) Truth and probability (TP): D(e,R) is an ortholattice admitting sufficiently 
many 2-valued homomorphisms, h: D(e,R)+ (0, l}, to recover the joint 
probabilities assigned by the state e to mutually compatible sets of elements 
(pi}i, 1, p+ D(e,R), as measures on a Kolmogorov probability space (XJJL), 
where X is the set of 2-valued homomorphisms on D(e,R), F is a field of 
subsets of X. and 

,n({h: h(p,) = 1, for all icl)) = tr(ebi). 
ic I 

(2) R-preferred (R-PREF): the eigenspaces ri of R belong to D(e,R). 
(3) e,R-definability (DEF): for any eE H and observable R of S defined 

on H, D(e,R) is invariant under lattice automorphisms that preserve e 
and R. 
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(4) Weak separability (WEAK SEP): if H is a factor space of a tensor product 
Hilbert space fl* = HC3M, and the state e** and preferred observable R** 

on H** induce the state e and preferred observable R on H, then 
D(e,R) = D(e**,R**). 

Remarks: The motivation for the conditions TP and R-PREF is clear from the 
preceding discussion. The condition DEF requires that the determinate sub- 
lattice is selected by the state e and a preferred observable R. The condition 
WEAK SEP is introduced to avoid a dimensionality constraint in the theorem: 
without this condition, the eigenspaces of R are required to be more than 
2-dimensional. The idea behind WEAK SEP is simply that we want two systems 
that are not ‘entangled’ (and are endowed with their own preferred observables) 
to be separable, in the sense that each system is independently characterized by 
its own determinate sublattice of properties, where the determinate sublattice of 
a component system is the restriction of the determinate sublattice of the 
composite system to the component system. Put differently, the determinate 
sublattice of a model quantum mechanical universe should be unaffected if we 
add a system to the universe, and there is no entanglement arising from any 
interaction between the universe and the added system. The qualification ‘weak’ 
here is added to contrast the condition with Einstein’s stronger separability 
requirement (see Section 3) that the determinate properties of two spatially 
separated systems should be independent of each other, even if the quantum 
state of the composite system is an ‘entangled’ state (a linear superposition of 
product states) resulting from a past interaction between the systems (as in the 
Einstein-Podolsky-Rosen argument). 

The strategy of the proof of the theorem proceeds by showing that, 
if p~D(e, R), then for any e,, i = l,..k, either e, 5 p or e, 5 p’. Since 
L e,,e,+,k = @: e, sp or e, sp’, i = I,... k} will be shown to satisfy the conditions 
of the theorem, maximality requires that D(e,R) = L,,,.,, . 

1 > 7” 

Proofi For any system S represented on a Hilbert space H, and any state eE H 

and preferred observable R on H, we can always choose a Hilbert space ti, a 
state e*EII*, and observable R* on H*, so that the composite system, S+S*, is 
in the state e@e* and the composite preferred observable is R&R*. Further- 
more, we can always choose an R* with at least one eigenspace, r;, of 
dimensionality greater than two. By WEAK SEP, if PED(~,R), then 
p@,l*~ D**(e@e*,R&R*), since D(e,R) must be the restriction of D**(e@e*,R&R*) 

to H. Even if an eigenspace ri of R is l-dimensional or 2-dimensional, the 
dimension of the eigenspace ri@r~ in H@fl is greater than two. 

We shall show that if pE D(e,R), then for any e,, i = l,...k, either e, % p or 

e, 5 P’, if dim(r,)>2. But the proof applies also to the determinate sub- 
lattice D**(e@e*,R&R*). In this sublattice, dim(r,@r*J>2 even if dim(r,) I 2, so 
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e,,@e*r* <p@Z* or e,,@e*r*, &8Z* (where e,,@e*,; is the orthogonal projection of 
e@e* onto the ijth eigenspace of R&R*). It follows that e, 5 p or e, 5 p’, even if 
dim(r,) I 2. 

So suppose PE D(e,R). Consider the k eigenspaces ri of R on which e has a 
non-zero projection. Since these eigenspaces are in D(e,R) (by R-PREF) and are 
assigned non-zero probability by the state e, for each such ri there exists at least 
one 2-valued lattice homomorphism hi, with non-zero measure p, such that 
hi (r;) = 1 (by TP). It follows that, for each i = l,..k. either r,r\p#O or r,r\pL#O 

(or else hi(p) = Zzi(pL) = 0, contradicting TP). 
Suppose, then, without loss of generality (as shown above), that dim(rJ>2. 

If r,~p = ri, then ri <p and e, % p. If riApL = rp then ri <pl and e, 5 p’. So, if 
either, r,r\p = ri or riApL = rir then either e, I p or e, 5 p’. 

If r+p # ri and r,r\p*#r, then either 0 #riAp<ri or 0 #ri~pL<ri (for either 
riAp #O or rir\pL#O). Suppose 0 #ri~p<ri (a similar argument applies if 
O#r,r\p%J. We write r,r\p = b for convenience. Clearly, bc D(e,R), since 
rig D(e,R) by R-PREF and PE D(e,R) by hypothesis, and TP applies. There 
are two cases to consider: (i) b is orthogonal to er, in ri, and (ii) b is not 
orthogonal to e, in ri. We first show that in either case we must have 

e,,= D(0). 
(i) Suppose b is orthogonal to e, in ri, i.e. b 5 e,‘, where the ’ here denotes the 

orthogonal complement in rP Consider all lattice automorphisms U that are 
rotations about e, in ri and the identity in rjL [such rotations are possible 
because dim(r,)>2, by hypothesis]. Clearly, U preserves e and R, because U 
preserves the eigenspaces of R, and U preserves the projections of e onto the 
eigenspaces of r. Then, by DEF, U(b)E D(e,R), for all such rotations, and there 
are clearly sufficiently many rotations (regardless of b’s dimension) to generate 
a set of elements {U(b)} in D(e,R) whose span is e,‘. It follows that 
el,‘E D(e,R), by lattice closure (i.e. by TP), and since rjE D(e,R) by R-PREF, 
lattice closure further requires that e,? D(e,R). 

(ii) Suppose b is not orthogonal to e, in ri. We may suppose that b is not 
l-dimensional [for if it is, we can instead consider b’, the orthocomplement of 
b in ri, since dim(r,)>2 by hypothesis]. Since b is skew to e,, b = cvd, where 
c 5 e,’ (i. e. c is orthogonal to e, in ri) and d is a ray skew to e,+he projection 
of the ray e, onto the subspace b. Consider a lattice automorphism U that is a 
‘reflection’ through e,vc in ri (thus U preserves e, and c, but not d) and the 

identity in r’. As in (i) above, U preserves e and R, so U(b)E D(e,R) and 
br\CJ(b) = CE D(e,R) by lattice closure. As in (i), since c is orthogonal to e, in rL, 

we can further consider rotations of c about e, in ri to show that er,‘E D(e, R) and 
hence that e,,E D(e,R). 

Now, since e,,E D(e,R) and e, ~0, there exists a 2-valued homomorphism h, 
with non-zero measure ,u such that h,(e,> = 1. Suppose PE D(e,R), and e, S. p and 
e, 5 p’. Then e,Ap = 0 and e,,Ap’ = 0 (because e, is a ray). It follows that for this 
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homomorphism h,,h,(P) = 0 and h&p’) = 0 contradicting TP. So either e,, 5 p or 
e,lp’. 

We conclude that ifpED(e,R), then either e, 5 p or e, zz p’, for all i = l,...,k. 
Maximality now requires that D(e,R) contains the set of all such elements p, i.e. 

D(e,R) = @: e, 5 p or e, 5 p’, i = l,... k} = Le,,p,2,.,e,b, because L,,_+,, satisfies TP, 
R-PREF, DEF and WEAK SEP. 

To see that TP is satisfied, we need to show that L,,,,,,,, is closed under the , 1 ‘1 
ortholattice operations, that there exist 2-valued homomorphisms on L,,,,, , 

and that the joint probabilities assigned by e to mutually compatible sets of 

elements (PiliE I in L,,, ...e can be recovered as measures on a Kolmogorov 

probability space (X,h,‘p;, where X is the set of 2-valued homomorphisms 

on Ll?,,..., . 
We’cbn~ider closure first. If pE L,,<, ,..e , then either e, I p or e, I p’, for all 

i = l,...,k. SO,P~E& ,.._ =,& because either z,, 5 p’ or e, 5 (p’)’ = p. To show that 

PAqE L, e ,,._. e,, and pvi; L, e,Z...e,, ifpE L,,,, ,:... e,t and 4s L,,,>..., , we need to show that 
e, 5 p/q. or e, 5 (phq)‘, and e, 5 pvq or e, 5 (Pvqj’L, for all i = l,..., k. If 

PE L,, + and qE L,,, ,:,__ e,k then, for each i = l,..., k, e, 5 p ore, ‘p’, and e,i 5 q or 
e, I 4’. So, either (1) e, 5 p and e, 5 q, in which case e, I pAq and e, I p 5 pvq, 

or (ii) e, 5 p and e, I q1 in which case e, 5 p 5 pvq and e, zz q1 5 

p’vq’ = (pAq)l or (iii) e, 5 p’ and e, 5 q, in which case e, 5 q I pvq and 
e, 5 p’ 22 plvql = @~9)11 or (iv) e, 5 p’ and e, 5 q’, in which case 
e,CIp’r\q’ = (pvq)‘ande,Ip’~p’vq = (pAq)l. 

To show the existence of 2-valued homomorphisms on L,,+,rA, consider k 

maps hi: L,, ...e +(O, 1 } defined as follows: For any element PE L,,,,,, , 

hi(p) = 1, if e,: 1 G and h,(p) = 0 if e, I p’. Each hi is a 2-valued homomorphism 

on& e . ..e . Clearly, hX0) = 0 and hZ(Z) = 1, because e,( I I = O1. If e, I p, hi(p) = 1 
and i,v) = 0, because p = (pf)‘. Similarly, if e, I p’, then hi@‘) = 1 and 
hi(p) = 1. So h;(p) = 1 - h,(p’). If e, I p and e, 5 q, so that h,(p) = 1 and 
h,(q) = 1, then e, 5 pAq, so hi(pr\q) = 1. If e, 5 p and e, 5 ql, so that h,@) = 1 
and hkq) = 0, or e, 5 p’ and e, I q, so that h,(p) = 0 and h,(q) = 1, then 

e, 5 pk’q’ = (PA&, SO that h,(pr\q) = 0. If e, 5 p’ and e, 5 ql, so 

that h,(p) = hkq) = 0, then e, 5 p’vql = (phq)‘, so that h,@Aq) = 0. 
so h,@Aq) = &44(q). Since pvq = (P’Aq’)‘, it follows that 

h,@vq) = h,(p)vh,(q) = hi(p)+hi(q) - h,@)hXq). So each hi is a homomorphism. 
[we note that the k 2-valued homomorphisms hi on L,,,,>+, are in general the 

only 2-valued homomorphisms on L, e, ,,,e _ Since any 2-valugd homomorphism 
that maps any ray in (e,,verZv...ve,ji onto 1 must map each of the rays 
e I,’ i= 1 ,...,k, onto 0, it follows that any such homomorphism must map one 
of each orthogonal (n- k)-tuple of rays in (e,,ve,2v...ve,)’ onto 1 and the 
remaining members of the (n- k)-tuple onto 0. The infimum of any two rays 
that are mapped onto 1 must also be mapped onto 1, but this is the zero 
element. So no 2-valued homomorphism can map any of the rays in 
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(e,,ve,zv...e,h)L onto l&except, of course, when dim((e,,ve,2v...ve,)‘) = 1, i.e. 
when n = k+l. In all other cases (n>k+l), it follows that the only 2-valued 

homomorphisms on L,, ,,,e,, are the homomorphisms h, i = I,..., k, where each 

hi maps the ray e, onto 1 and every other ray in L,,,,,..,, onto 0 (since all the 
other rays in L,+, ,,,e are orthogonal to e,).] 

To generate the probabilities assigned by e to mutually compatible sets of 

elements (Pi> ic 17 PF L, e, ...e,k on the Kolmogorov probability space, the 2-valued 
homomorphism that ‘maps e, onto 1 (more precisely, the corresponding 
singleton subset) is assigned the measure tr(ee,), for i = l,..., k. (The homomor- 
phism that maps (e,,ve,Lv...ve,)’ onto 1, assuming dim((e,,ve,zv...ve,)L) = 1, is 
assigned the measure 0.) To see that p({h: h(p,) = h(pJ = . . = 1)) = tr(ep,p,...), 
first note that plp2... =p,~p+... for compatible projections pi, p_,..., and so 
the product p,p2... defines an element, call it p, that also belongs to L,,, ,_, L ,,“, 

since L,,, ,,_.. c is closed under the ortholattice operations. Furthermore, 
h(p,) = h(&) 1 . . . = 1 if and only if h(p,r\p,~....) = h(p) = 1, since h is a lattice 
homomorphism. So it suffices to show that, for a general element PE L,,,,,,,,,A, 

p( {h:h(p) = 1)) = tr(ep). 

Now any PE L,, e, .A, can be expressed as p = e,,ve,,v...vq, for some i, j ,..,, q, 

where q is the ‘projection operator onto a subspace (possibly the zero 
subspace) orthogonal to all the e,, i.e. qE(e,,ve,v...ve,)‘. If h(p) = 1, 
h(r,,ve,v. ..Aq) = h(e,,)vh(e,)v. ..vh(q) = 1. So: 

p({h: h(p) = 1)) =p({h: h(e,)vh(e,,)v...vh(q) = 1)) 

=p({h: h(e,,) = l})+p({h: h(e,) = l})+..., 

because u( {h: h(q) = 1 }) = 0 and h(e,,) #h(e,,) if i#j. It follows that: 

p({h: h(p) = 1)) = tr(ee,)+tr(ee,)+... i 

= tr(e(e,+e,+...+q)) 

because p({h: h(e,) = 1)) = tr(ee,) and tr(eq) = 0 and hence: 

p({h: h(e,) = 1)) = tr(e(e,,ver,v...vq)) 

= tr(ep) 

since e,,e, ,..... and q are mutually orthogonal. 
R-PREF is satisfied by construction. Since e,,E L,, ,_,, e,~, i = l,..., k, and every 

ray in (e,lve,2v...ve,J’ belongs to Le,,e,2,.,e,, it follows that every ray in 
e I’, i= 1 ,..., k, (the orthocomplement of e, in ri) belongs to L,, ,,,, r,,, so r,~ 

Lb e ...e , i = 1 ,...,k by lattice closure (established above). The remaining m-k 

elements ri also belong to L,,, ,,,,_ e,e, because each of these is represented by a 
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subspace orthogonal to e and hence by a subspace in (e,,ve,Zv...ve,k)L. But since 
every ray in (e,,ve,2v...ve,)L belongs to L,,,,,.,,,A, every subspace of 
(e,,ve,2v...ve,JL belongs to L, e, ,,,e . 

DEF is satisfied because i&t& automorphisms that preserve e and R 

automatically preserve the non-zero projections of e onto the eigenspaces ri of 
R, i.e. the rays e,, i = l,..., k, that generate L,, ,__, p,,. 

To see that WEAK SEP is satisfied, consider a composite system, S+S*, 
represented on a Hilbert space HOti. Suppose the state of S+S* is eQe* and 
the privileged observable of S+s” is an observable R&R*. Then, for all i, 

e, 5 p or e,Z 5 p’ if and only if, for all i, j, e,@e*,;<p@Z* or e,,@e*,;<p%I*. It 
follows that D(e@e*,R&R*) = D(e,R). QED 

3. Interpretations 

The above analysis shows that the determinate sublattices of the lattice of 
projection operators or subspaces, L(H), of a Hilbert space H, representing the 
propositions (‘yes-no’ experiments) of a quantum mechanical system are just 
the lattices D(e,R) = L,, ,,,, e,~ = (p: e, 5 p or e, 5 p’, i = l,..., k}. These are the 
maximal subcollections’of quantum propositions that can be determinately true 
or false, given the quantum state e and a preferred observable R, subject to 
certain constraints that essentially require these subcollections to be lattices 
determined by e and R on which sufficiently many truth valuations exist to 
recover the usual quantum statistics. The set of observables associated with 
L e,e,,.,e,‘ includes any observable whose eigenspaces are spanned by rays in 
L e,‘e,‘,,,C . The set of maximal observables includes any maximal observable with 
k eigenvectors in the directions e,, i = l,...,k. 

The uniqueness theorem characterizes a class of ‘no collapse’ interpretations 
of quantum mechanics, where each interpretation involves the selection of a 
particular preferred determinate observable, and hence the selection, via the 
quantum state at a particular time, of a particular determinate sublattice with 
respect to which the probabilities defined by the quantum state have the usual 
epistemic significance. So the quantum probabilities defined on the determinate 
sublattice can be understood as measures of ignorance about the actual values 
of observables associated with propositions in the determinate sublattice, 
i.e. the actual values of the preferred determinate observable and observables 
that inherit determinate status via the quantum state and the preferred 
observable. 

We note that Bell concluded his seminal critique of impossibility proofs for 
hidden variables in quantum mechanics 22 by observing that the equations of 
motion in Bohm’s theory ‘have in general a grossly non-local character’, so that 
‘in this theory an explicit causal mechanism exists whereby the disposition of 

“J. S. Bell, ‘On the Problem of Hidden Variables in Quantum Mechanics’, op. cit., p. 452. 
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one piece of apparatus affects the results obtained with a distant piece’. He 
remarked that ‘the Einstein-Podolsky-Rosen paradox is resolved in the way 

which Einstein would have liked least’ and raised the question whether one 
could prove ‘that any hidden variable account of quantum mechanics must have 
this extraordinary character’. Bell subsequently proved23 that no hidden 
variable theory satisfying a locality constraint could reproduce the quantum 
statistics. Our theorem goes beyond this result by characterizing all possible 
‘completions’ of quantum mechanics (‘no collapse’ interpretations), subject to 
certain natural constraints. 

3.1. The Orthodox (Dirac-von Neumann) Interpretation 
Without the projection postulate, the orthodox interpretation is a ‘no 

collapse’ interpretation of quantum mechanics in our sense. On the orthodox 
interpretation, an observable has a determinate value if and only if the state of 
the system is an eigenstate of the observable. Equivalently, the propositions 
that are determinately true or false of a system are the propositions represented 
by subspaces that either contain the state of the system, or are orthogonal to the 
state, i.e. the propositions assigned probability 1 or 0 by the state. The orthodox 
interpretation can therefore be formulated as the proposal that the preferred 
determinate observable is the unit observable Z, and that D(e,I) = L, is the 
determinate sublattice of a system in the state e, where L, = (p: e 5 p or e 5 

The choice of the preferred determinate observable as the unit observable 
leads to the measurement problem. For a composite system S+M in an 
entangled state of the form le) = &iiai)iri), neither R-propositions nor 
A-propositions belong to the sublattice L,. In order to avoid the problem, Dirac 
and von Neumann assume the projection postulate,24 that unitary evolution is 
suspended in the case of a measurement interaction, and the state of S+M is 
projected onto the ray spanned by one of the unit vectors lai)iri) with 
probability Ici12, because only in such a state, according to the orthodox 
interpretation, do the observables A and R have determinate values. 

3.2. Resolution of the Measurement Problem 
There is nothing in the mathematical structure of quantum mechanics that 

forces the choice of the preferred determinate observable R as the unit 
observable I, and indeed there is every reason to avoid this choice because it 
leads to the measurement problem. ‘No collapse’ interpretations that seek to 
solve this problem represent alternative proposals for choosing R. For such 
interpretations, there is no measurement problem if R plays the role of a pointer 
observable in all measurement interactions, or an observable correlated with 
the pointer observable. 

‘3J. S. Bell, ‘On the Einstein-Podolsky-Rosen Paradox’, op. cit. 
“4Dirac, op. cit., p. 36; and von Neumann, op. cif., pp. 351 and 418 
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To see this, consider a model quantum mechanical universe consisting of two 
systems, S and M, associated with a Hilbert space H@H,. A measurement 
interaction between S and M, say a dynamical evolution of the quantum state 
of the composite system S+M described by a unitary transformation that 
correlates eigenstates kzi) of an S-observable A with eigenstates IrJ of an 
M-observable R, will result in a state represented by a unit vector of the form 

le) = Cicilai>lri> ( assuming initial pure states for S and M). If we take ZC3R as 
the preferred determinate observable, the projections of the ray e onto the 
eigenspaces H@ri of ZC3R are the rays e, spanned by the unit vectors lai)lri). So 

for this state, the determinate sublattice contains propositions represented by 
the projection operators a,@Z,, where a, here represents the projection operator 
onto the subspace in H, spanned by the unit vector IaJ, i.e. propositions 
corresponding to the eigenvalues of A (and also, of course, propositions 
corresponding to pointer positions, represented by the projection operators 
Zs@ri). 

Evidently, the same conclusion follows if we take some observable Z@Z@T as 
the preferred observable, where R is correlated with T via the dynamical 
evolution of the quantum state in a measurement interaction, so that the state 
after the measurement takes the form le) = &ilai)lri)lti). In this case, the 
projections of the ray e onto the eigenspaces H@H#ti of Z@T@T are the rays 
e,, spanned by the unit vectors lui)lri)lti). 

It follows that, without introducing any measurement constraints on the 
determinate subluttices (apart from the choice of R, which could still be justified 
on grounds independent of measurement), we derive that the propositions 
corresponding to the observable correlated with an appropriate pointer observ- 
able in the ‘entangled’ state arising from a unitary transformation representing 
a quantum mechanical measurement interaction are determinately true or false. 
So we derive the interpretation of the probabilities defined by a quantum state 
for the eigenvalues of an observable A as ‘the probabilities of finding the 
different possible eigenvalues of A in a measurement of A,’ where a measure- 
ment is represented as a dynamical process that yields determinate values for A. 

3.3 The Modal Interpretations of Kochen and of Dieks 
The idea behind a ‘modal’ interpretation of quantum mechanics is that 

quantum states, unlike classical states, constrain possibilities rather than 
actualities-which leaves open the question of whether one can introduce ‘value 
states’25 that assign values to the observables of the theory, or equivalently, 
truth values to the corresponding propositions. As Van Fraassen puts it:26 

25The terminology is Van Fraassen’s. See B. van Fraassen, Quantum Mechanics: An Empiricist 
View, op. cit., p. 275. 

26B. van Fraassen, ibid., p. 279. 
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In other words, the [quantum] state delimits what can and cannot occur, and how 
likely it is-it delimits possibility, impossibility, and probability of occurrence-but it 
does not say what actually occurs. The transition from the possible to the actual is not 
a transition of state, but a transition described by the state. 

Apart from Van Fraassen’s original version of the modal interpretation2’ 
there are now a variety of other ‘no collapse’ interpretations of quantum 
mechanics that can be seen as modal in this sense, for example, the inter- 
pretations of Krips, Kochen, Healey, Dieks, and Bub.28 All these modal 
interpretations share with Van Fraassen’s interpretation the feature that an 
observable can have a determinate value even if the quantum state is not an 
eigenstate of the observable, so they preserve the linear, unitary dynamics for 
quantum states without requiring the projection postulate to validate the 
determinateness of pointer readings and measured observable values in 
quantum measurement processes. 

The modal interpretations of Kochen and Healey exploit the polar decom- 
position theorem to define value states. By that theorem, any pure quantum 
state le) of a system S+S* can be expressed in the form: 

le> = C.cilui)@lvJ 

for some orthonormal set of vectors { lui)} in H(S) and some orthonormal set 
{ Ivi)} in H(S*). The decomposition is unique if and only if lci12 # Ic,12 for any 
i#j. In the non-degenerate case, the basic idea is to take the propositions that 
are determinately true or false for S in the quantum state le) as the propositions 
represented by the Boolean algebra of projection operators generated by the set 
{P,,)) . (Similar remarks apply to s’, of course.) There are alternative proposals 
for the degenerate case. Clifton’s proposal, 29 closely related to Dieks’, is to take 

the set of determinate propositions of S as the propositions represented by 
projection operators of the form P1+P2, where P, belongs to the spectral 

measure of the density operator W representing the reduced state of le) for S, 
and P, belongs to the null space of W (i.e. P, W= 0). All S-propositions 
assigned probability 1 or 0 are included in this set. 

*‘First formulated in B. van Fraaasen, ‘Hidden Variables and the Modal Interpretation of 
Quantum Statistics’, op. cit. 

*‘S. Kochen, ‘A New Interpretation of Quantum Mechanics’, op. cit.; H. Krips, The Metaphysics 
of Qunntum Theory (Oxford: Clarendon Press, 1987); R. Healey, The Philosophy of Quantum 
Mechanics (Cambridge: Cambridge University Press, 1988); D. Dieks, ‘Quantum Mechanics 
Without the Projection Postulate and Its Realistic Interpretation’, op. cit.; ‘Modal Interpretation of 
Quantum Mechanics, Measurements, and Macroscopic Behavior’, op. cit.; J. Bub, ‘Quantum 
Mechanics Without the Projection Postulate’, op. cit.; ‘How to Interpret Quantum Mechanics’, 
op. cit. 

29R Clifton ‘Independently Motivating the Kochen-Dieks Modal Interpretation of Quantum 
Mechanics’, B;itish Journal for the Philosophy of Science 46 (1995), 33-57. 
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The interpretations of Kochen and of Dieks can therefore be understood as 
the proposal that for any quantum state W of a system S, pure or mixed [where 
W arises from partial tracing over H(S*) if S is a subsystem of a system S+S*], 
the determinate propositions of S are the propositions represented by the 
projection operators in the set: Det,,(S) = {P: P = P,+P,,PI~ spectral 
measure of W, P2 E null space of w>. 

As Clifton has shown,30 an equivalent formulation is: 

Det,,(S) = {P: PP,, or O,VP,.+ SR( W)}, 

where SR( IV’) is the set of projection operators in the spectral representation of 
W (i.e. the projection operators onto the eigenspaces corresponding to the 
non-zero eigenvalues of IV’).31 It is then easy to see that Det,,(S) forms a 
sublattice of H(S). 

We can now prove a recovery theorem for the interpretations of Kochen and 
of Dieks, that these versions of the modal interpretation are ‘no collapse’ 
interpretations, in the sense of Theorem 1, for the preferred determinate 
observable R = W@Z*, i.e. the determinate sublattices of S, as a subsystem of 
the system S+S*, are the sublattices o(e, W@Z*)l,, where ‘Is’ denotes the 
restriction of the sublattice to the Hilbert space H of the subsystem S, e is the 
ray representing the quantum state of S+S*, and W is the reduced state of e for 
the system S. (So the preferred determinate observable is not fixed, but changes 
with time as the state e evolves.) 

Theorem 2 (Recovery Theorem) 

If S is a subsystem of a quantum mechanical universe S+S* represented on 
a Hilbert space H@H*, and the state of S+S* is represented by a ray 
E H@H*, then 

@e, W@fh = W&9, 

Proox We introduce the following notation to capture the distinctions required 
to formulate the proof precisely: 
W; the ith eigenspace of W (in H). 

pw,: the projection operator onto Wi (in H). 
( W~Z*)i: the ith eigenspace of WBZ’ (in H@H*). 

PCwm/),: the projection operator onto ( W~Z*)i (in H@H*). 

eCWmI*),: the non-zero projection of the ray e onto ( W~Z*)i (in H@H*). 

P e, wm : the (non-zero) projection operator onto the ray e(,,f,, (in H@H*). 

30R. Clifton, ‘Independently Motivating the Kochen-Dieks Modal Interpretation of Quantum 
Mechanics’, op. cit. 

3’The spectral measure of W is the Boolean algebra generated by SR( Wj. 
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Note that there is a l-l correspondence between the eigenspaces Wi in H and 
( W~f)i in H@H*, because wi is an eigenvalue of W if and only if wi is an 
eigenvalue of W@I*. 

In our formulation of the uniqueness theorem in Section 2, we showed that 

D(e,R) = L,, ,,,_, p,~ = (p: er,(p or er,%p’, i = l,..., k}, 

where the er, are the non-zero projections of e onto the k eigenspaces of R. 

Writing P for the projection operator corresponding to the lattice element 
p, and P, for the projection operator corresponding to the lattice element e,,, 
the determinate sublattice of projection operators can be expressed equivalently 
as: 

{P: PP,, = Pe,, or 0, Vi), 

where the quantifier over the index i ranges over all non-zero projections of CJ 
onto the eigenspaces of R. 

So what we want to show is that 

D(e, W@Z*)lS= {P:(P@Z*)Peiwa,., = PC,,,@,., or 0, Vi) 

E {P: PP,, = P,, or 0, Vi}. 

The quantifier over the index i in the expression for Det,,(S) ranges over all 
projection operators P, in SR( W). The quantifier over the index i in the 
expression for D(e, W@Z*jl, ranges over all non-zero projections of e onto the 
eigenspaces of W@Z*, including in principle the eigenspace corresponding to 
the zero eigenvalue (the null space of WOf), if WOZ* has a zero eigenvalue. 
Since W is the reduced state of e for the system S, e lies entirely in the span of 
the non-zero eigenvalue eigenspaces of W@Z*, and hence has zero projection 
onto the zero eigenvalue eigenspace, if such an eigenspace exists. So the 
quantifier in the expression for D(e, W@Z*)ls in fact ranges over the eigenspaces 
with projection operators in the set SR( W@Z*), which are in l-l correspondence 
with projection operators in the set SR(W). In the following, quantification 
over the index i refers to a set of projection operators or subspaces in l-l 
correspondence with the set SR(W). 

(i) We first prove that 

DekdS)CD(e, W@Z*>l,. 
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It suffices to show that the generators of De&(S) are in D(e,FV@l’)\,, 
because o(e, W&)I S is an ortholattice and so must include the lattice Det,o(S) 
as a sublattice if it includes the generators of Det,,(S). 

The generators of Det,,(S) are the projection operators in the set: 

{P@ Vi}u{P: PP,:=O, Vi}. 

To see that {P,: V,i}0(e,IV&)Is, note that 

because these are just the projection operators onto the non-zero eigenvalue 
eigenspaces of the preferred determinate observable W@f, which always 
belong to D(e, W@f) by assumption. But since 

P (wBf), = Pwi@f, vi, 

it follows that 

PW~ D(e, W@f)iS, Vi. 

To see that {P: PPY = 0, Vi}CD(e, W@f)l,, note that if PP,, = 0 for all 
P w;~ SR( W), then 

(P@f)(P@l*) = (P03Z*)PCw,fJi = 0, Vi, 

and so 

But if (P63f)Pefm,, = 0 for all non-zero projections of the ray e onto the 
non-zero eigenvalue eigenspaces of W@f then, since e has zero projection onto 
the zero eigenvalue eigenspace of W@f (if such an eigenspace exists), 

(P@0P+,~,, = 0 for all non-zero projections of e onto all the eigenspaces of 
W@f, and so, by definition: 

(ii) We now prove that 
PE D(e, W@Z*)ls 

D(e, w@f) Is c Det,o(S). 
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Suppose the state vector le) can be represented in One of its decompositions 
with respect to H@& as: 

We can express this vector as 

where for fixed i,lcv,12 = Ic~>/~ = . . . = Ici12 and the index i ranges over the distinct 

numbers Ici12. These are just the non-zero eigenvalues of W that index SR( PI/), 
and so: 

We now have, for all i: 

Suppose PE D(e, W@r>,, then: 

(P@Z*)P,,~~~, = P,,,f, or 0, vi. 

It follows that 

and so 

&PIuii>lv,) = &Juii)lvii) or IO), Vi. 

i i 

For a fixed i, this implies that either PIu,) = Iuij> for allj, or PluJ = IO) for all 
j, because cii # 0 for any j. And since (IQ, Vj} is a basis for the eigenspace Wi: 

PPK = P,, or 0, Vi, 

i.e. 

PE Det,,(S). 
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3.4. Bohmian Mechanics 

Bohm’s 1952 hidden variable theory or ‘causal’ interpretation32 can be 
understood as a proposal for implementing an interpretation in which the 
preferred determinate observable R is fixed once and for all as position in 
configuration space, instead of being defined by the time evolving quantum 
state as in the modal interpretations of Kochen and Dieks. (Alternative versions 
of Bohm’s theory taking R as momentum or some other observable instead of 
position are considered by Epstein’ and Stone)3’. 

Bohmian dynamics arises as the dynamics of ‘value states’ on the determi- 
nate sublattice L,,, ,,,e (i.e. states defined by 2-valued homomorphisms on 
L e,e,,,,e,) as the quantum state e evolves in time. As we have seen, value states 
defined by 2-valued homomorphisms (with non-zero measure) are in l-l 
correspondence with the rays e,, hence with the eigenspaces ri of R, and 
assign the same value to e, and li, for all i. Since the evolution of such states 
is completely determined by the evolution of e and of R, we want an 
equation of motion for the determinate values of R that will preserve the 
distribution of R-values specified by e, as e evolves in time according to 
Schrodinger’s time-dependent equation of motion. (Several authors have 
proposed dynamical evolution laws for value states in the modal interpreta- 
tions of Kochen and of Dieks, where the preferred determinate observable is 
not fixed but is defined by the quantum state and so changes with time as the 
state evolves.)35 

Recall that Bohm extracts two real equations from Schrodinger’s time- 
dependent complex equation of motion for the wave function of a single 
particle of mass M, 

by substituting I,U = Rexp f :36 
iI 

32D. Bohm, ‘A Suggested Interpretation of Quantum Theory in Terms of ‘Hidden Variables’: 
Parts I and II’, op. cit. 

33T Epstein, ‘The Causal Interpretation of Quantum Mechanics’, Physical Review 89 (1952), 319 
and physical Review 91 (1953), 985. 

34A Stone ‘Does the Bohm Theory Solve the Measurement Problem?, Philosophy ofScience 61 
(1994j, 25&66. 

35D. Dieks, ‘Modal Interpretations of Quantum Mechanics, Measurements, and Macroscopic 
Behavior’ op. cit.; P.E. Vermaas, ‘Unique Transition Probabilities in the Modal Interpretation’, 
Studies in History and Philosophy of Modern Physics 27 (1996) 133-159; G. Bacciagaluppi and M. 
Dickson, ‘Modal Interpretations with Dynamics’, manuscript. 

36The symbol ‘R’ here should not, of course, be confused with the symbol ‘R’ for the preferred 
determinate observable. 
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aR* 
- + V. 
at 

The first equation (derived from the real part of the Schrodinger equation) 
can be interpreted as a Hamilton-Jacobi equation for the motion of the particle 
under the influence of a potential function P’ and an additional ‘quantum 

2 2 

potential’ & !$, The trajectories of these particles are given by the solutions 

to the equation: 

where Im( ) denotes the imaginary part of ( ), p = R* = llyj*, and 

J= q+ ( m ~~*VI,Y), i.e. the particle trajectories are given by the integral 

curves of a velocity field defined by the gradient of the phase S. So the 
trajectories x(t) depend on the wave function v/. The second equation (derived 
from the imaginary part of the Schrodinger equation) can be written as 
a continuity equation for an ensemble density p = lw12, and a probability 
current J: 

$ + V.J = 0. 

The continuity equation guarantees that if p = 1 I,u~* initially, p will remain equal 
to 1~1~ at all times. 

Vink37 has shown how to formulate a dynamics for any always determinate 
observable by generalizing a proposal by Bell 38 for constructing stochastic 

Bohm-type trajectories for fermion number density regarded as an always 
determinate observable or ‘beable’ for quantum field theory. 

Vink considers an arbitrary complete set of commuting observables R’ 
(i = 1,2 ,..., 4, with simultaneous eigenvectors /r1nl,r2,+,...r n , I-I 3 where the 
n’ = 1,2 ,..., N’ label the finite and discrete eigenvalues of R’. Suppressing the 
index i, these are written as ir,). (Equivalently, one can take the Ir,) to be 

“5. C. Vink, ‘Quantum Mechanics in Terms of Discrete Beables’, Physiccll Review A48 (1993), 
1808-1818. 

38J S Bell ‘Beables for Quantum Field Theory’, in Speakable and Unspeakable in Quantum 
Mechat& 0;. cit., pp. 173-180. See pp. 176-177. 
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the different eigenvectors of a maximal observable R of which each of the R’ is 
a function. Then stippling the dynamics for R automatically induces a dynamics 
on each R’.) The time evolution of the state vector is given by the equation of 
motion: 

&!@ = HI v(t)) 
dt 9 

or 

ifid(r,l w> - = (r#V) = IUrnIHIrm)(rmlv) 
dt 

m 

in the R-representation. 
The imaginary part of this equation yields the continuity equation: 

where the probability density P,, and the current matrix J,, are defined 

by: 

P,(t) = I(r,lW)l* 

J,,(t) = 2W(y/O) I r,Xr, I f4r,)O-, I v(O)) 

For the non-maximal (degenerate) observables R’, the probability density and 
current matrices are defined by summing over the remaining indices, e.g. 

P, = ~l<rin~,rlW)12, 

where r = $,,,i for j# i, and similarly for Y,,,. 
We want a stochastic dynamics for the discrete observable R consistent with 

the continuity equation. Suppose the jumps in R-values are governed by 
transition probabilities T,,dt, where Tm,dt denotes the probability of a jump 
from value r,, to value rm in time dt. 

The transition matrix gives rise to time-dependent probability distributions 
of R-values. It follows that the rate of change of the probability density P,(t) for 
r,, must satisfy the master equation: 

y = x( T,mPm - T,,P,). 
m 
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But, from the Schrodinger equation, dP,(t)ldt also satisfies the continuity 
equation 

so we require 

J 

fi. 
nm = T,,,P,,, - T,,P,. 

We want solutions for the transition matrix T, given P and J, with T,,,, 20. 

Since J,,,, = -J,, (hence J,,, = 0), the above equation yields n(n - 1)/2 equa- 
tions for the n2 elements of T. So there are many solutions. Bell’s choice39 was: 

TV,,, = k, if J,, L 0 
m 

Tnm = 0, if J,,, d 0 

For n = m, Tnn is fixed by the normalization zmTmndt = 1. 
Vink shows that Bell’s solution for the transition matrix leads to Bohm’s 

theory in the continuum limit, when R is position in configuration space. For 
example, consider a single particle of mass A4 on a l-dimensional lattice. Let 
x = nd, with n = 1,2,...,N and d the lattice distance. Vink shows that to first 
order in d: 

J,,, = sd [S’(md)Pd& 1 - S’(md)Pdm,n+ II 

where S is the phase, and the derivative, F’, of a function F on the lattice is 

defined as F’(x) = F(x+dk_F(x). Thus Bell’s solution yields: 

T,, = s,,,“_ ,, S’(md) L 0 

For positive S’(md) the particle can jump from site m to site m+l with 

probability 
IS’(md)ldt 

Md , and for negative S’(md) the particle can jump from site 

391n J. S. Bell, ‘Beables for Quantum Field Theory’, op. cit. 
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m to m -1 with the same probability. So the nearest neighbour interactions in 
the Hamiltonian induce jumps only between neighbouring lattice sites for this 
transition matrix. Since each jump is over a distance d, the average displace- 
ment in a time interval dt is: 

dx = S’Wt 
M ’ 

i.e. 

dx S’(x) -- 
dt- M’ 

As d-+0, S’-$S, and so in the continuum limit: 

dx 3s -_=x 
dt M’ 

as for the continuous trajectories in Bohm’s theory. 
Vink shows that the dispersion vanishes in the limit as d-0, and so the 

trajectories become smooth and identical to the trajectories in Bohm’s theory as 
d+O. Other solutions for the transition matrix induce jumps between distant 
sites, so differentiable deterministic trajectories are not recovered even in the 
continuum limit. Nelson’s stochastic dynamics 4O is characterized by one such 
solution. Bohmian dynamics, as the continuum limit of a stochastic dynamics, 
appears to be the unique deterministic dynamics for a ‘no collapse’ interpret- 
ation of quantum mechanics based on position in configuration space as an 
always determinate observable. 

Vink himself proposes to take all observables as simultaneously determinate, 
with their determinate values all evolving independently in accordance with the 
above stochastic dynamics. These determinate values do not satisfy the Kochen 
and Specker functional relationship constraint in general, but it turns out that this 
constraint is satisfied for the measured values of simultaneously measured ob- 
servables. This follows because a measurement, represented as an evolution of the 
quantum state to a linear superposition of product eigenstates of a pointer 
observable and measured observable, leads to an effective collapse of the state to 
one of the product eigenstates, as in the analysis of measurement in Bohm’s theory 
discussed below. The determinate values of observables in eigenstates of these 
observables are just the corresponding eigenvalues, and the functional relation- 
ship constraint is satisfied for common eigenstates of a set of observables.41 

@E Nelson ‘Derivation of the Schr(idinger Equation from Newtonian Mechanics’, Physica/ 
Rev& 150 (1666), 1079-1085. 

4’For a discussion, see J. Bub, ‘Interference, Noncommutativity, and Determinateness in 
Quantum Mechanics’, Topoi 14 (1995), 3943. 
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There are two empirically equivalent proposals in the literature for handling 

observables other than position in configuration space in Bohm’s theory. 
Bohm, Schiller, and Tiomno,42 and also Dewdney,43 Holland and Vigier,44 and 
Bohm and Hiley45 treat spin as well as position in configuration space as an 
always determinate observable. So a quantum particle always has a determinate 
spin property as well as a determinate position in configuration space. The spin 
observable can take determinate values that are not eigenvalues of spin in states 
that are not eigenstates of spin, but the measured value of spin is always an 
eigenvalue of spin. This treatment of spin could, in principle, be extended to all 
observables. 

The alternative way of handling observables other than position in configu- 
ration, space, favoured by authors such as Bell,46 Diirr, Goldstein and 
Zanghi,47 Albert,48 and Cushing,49 conforms to an interpretation in our sense. 
The propositions in a Bohmian determinate sublattice are selected by the 
quantum state and position in configuration space as the only preferred 
determinate observable R. While position in configuration space is always 
determinate, other observables are sometimes determinate and sometimes 
indeterminate, depending on the quantum state. These other observables, with 
temporary determinate status inherited from R and the quantum state, can be 
associated with dispositions of the system. The observable spin, for example, is 
determinate in some quantum states and indeterminate in other quantum states. 
The possibility that the state can evolve to a form in which a spin component 
has a determinate value reflects a feature of the dynamics of the quantum state 
understood as a new kind of field in R-space, that this field evolves in a certain 
way in the presence of magnetic fields, i.e. it reflects a disposition of the system 
to undergo a certain kind of change of R-value under certain physical 
conditions. The different eigenvalues of the spin component mark the different 
possible changes in R associated with this evolution of the state. As we have 
seen, when the state takes a form in which a spin component has a determinate 
value (where this value is to be understood dispositionally), the probabilities 

4ZD. Bohm, R. Schiller and J. Tiomno, ‘A Causal Interpretation of the Pauli Equation’, Suppl. 
Nuvvo Cimento 1 (1955), 48-66. 

42C Dewdney ‘Constraints on Quantum Hidden-Variables and the Bohm Theory’, Journal of 
Physics A: Math: Gen. 25 (1992), 3615-3626. 

““P R Holland and J. P. Vigier ‘The Quantum Potential and Signalling in the Einstein- 
Podolsky-Rosen Experiment’, FoundLtions of Physics 18 (1988), 741-749. 

45D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation qf‘ Quantum 
Theory (London: Routledge, 1993). 

4hJ. S. Bell, ‘Quantum Mechanics for Cosmologists’; and ‘On the Impossible Pilot Wave’. in 
Speakable and L&speakable in Quantum Mechanics, op. cit. 

47D Diirr S. Goldstein and N. Zanghi. ‘Ouantum Equilibrium and the Origin of Absolute . 
Uncertainty’, Journal of Statistical Phy& 61 il992), 843-907. 

48D Albert Quantum Mechanics and Experience (Cambridge. MA: Harvard University Press, 
1992): ’ 

49J T Cushing Quantum Mechanics.. Historical Contingency and the Copenhagen Hegemony 
(Chicago: University of Chicago Press, 1994). 
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assigned to the different eigenvalues of the spin component can be interpreted 
epistemically, as measures over a range of possible spin properties, one of which 
is actual. But these spin properties play no role in the dynamical evolution of 
the R-trajectories, which depends entirely on the initial value of R and the 
quantum state. From this point of view, the only real change in a Bohmian 
universe is the change in the quantum state and the change in R, and this 
suffices to account for all quantum phenomena. The propositions in the 
determinate sublattice for a given quantum state are the propositions that can 
be taken as determinately true or false consistently with R-propositions, and 
these will be associated with observables that we can interpret as measured via 
R as the pointer observable when the quantum state takes an appropriate form 
correlating values of R with values of these observables. A ‘measurement’ in 
this sense reveals dispositions of the system, grounded in the value of R and the 
quantum state, not pre-existing real occurrent values of any measured observ- 
able. So there is no interpretative advantage in taking any observables other 
than R as always determinate. 

To illustrate, we consider the measurement of spin-related observables on 
Bohm’s theory (following an analysis by Pagonis and Clifton).50 

Let St, S$, S$, S$, St represent the squared components of spin in the x, 
x’, y, y’ and z directions of a spin-l particle, respectively, where X, y, z and x’, 
y’, z form two orthogonal triples of directions with the z-direction in common. 
Each of these observables has eigenvalues 1 and 0 (taking units in which k = 1 
and a spin component has eigenvalues - 1, 0 and +l), corresponding respect- 
ively to a plane and a ray in Hs. The three 0-eigenrays of S$ S;, Sz form an 
orthogonal triple in Ifs, and the three 0-eigenrays of S$, S$, S’, form another 
orthogonal triple in H3, with the 0-eigenray of S”, in common. 

Define the observables H and H’ as: 

H’ = s?,,-5% 
.v 

The observables Hand R are maximal, with three eigenvalues, - 1, 0 and +l, 
and incompatible (i.e. the corresponding operators do not commute). The 
eigenvalues - 1,O and + 1 of H correspond to the orthogonal triple of eigenrays 
defined by the 0-eigenrays of s”,, 8 and $, respectively. The eigenvalues - 1, 
0 and +l of R correspond to the orthogonal triple of eigenrays defined by the 
0-eigenrays of s’,<, $ and S$ respectively. 

The non-maximal observable $ can be represented as a function of H and 
also as a function of H: 

“(2 Pagonis and R. Clifton, ‘Unremarkable Contextualism: Dispositions in the Bohm Theory’, 
Foundations of Physics 25 (1995), 281-296. 
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So $ can be measured via a measurement of H or of H’. 
The observable H can be measured, in principle, by passing the particle 

through a suitable inhomogeneous electromagnetic field, which functions 
much like a Stern-Gerlach magnet for the measurement of spin (see Swift and 
Wrights’). The interaction of the particle with the field will be governed by a 
Hamiltonian of the form: 

Hi,, = gi--’ ’ H, 
a4 

where g is a positive coupling constant that is non-zero only during the 
interaction, and q is a component of the particle’s position. We make the usual 
assumption that the measurement is impulsive, so that the Schriidinger 
equation reduces to 

during the interaction, and has the solution 

Taking the initial quantum state as 

where q(q) is a narrow wave packet symmetric about q = 0, and IH =J) is an 
eigenstate of H, the state at any time t during the interaction is: 

v(qJ) = &y&vtit)lH =j), 

With a suitable choice for the coupling constant g, after a time t 2 T (at the 
end of the interaction), gt will be significantly larger than the width of the 
packet q(q), so that the overlap between adjacent wave packets q(q-gjt) is 
negligible. As a result of the interaction, the particle’s H-value will therefore 
become correlated with the particle’s q-position. The Bohmian particle 

5’A R Swift and R. Wright, ‘Generalized Stem-Gerlach Experiments and the Observability of 
Arbitiaj Spin Operators’, Journal of Mathematical Physics 21 (1980), 17-82. 
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trajectories during the interaction are governed by the equation of motion 
for q: 

where p(q) = lw(q,t)12 is the probability density and Jq = y/*(q,t)gHy/(q,t) is the 
q-component of the probability current. So 

gCjlcj121P(9-&jt)12 

dq 
dt = ;:,C,“e(q-Rit)iz ’ 

This equation can be solved to yield different trajectories for the different initial 
positions of the particle in the initial wave packet. By the continuity equation, 
ap aJ 
- + 4 = 0, the particle trajectories at time t> T will be distributed over the 
at aq 
positions q = gjt with probabilities ic,12, for j = - l,O,+l. So q acts as a 
measurement pointer for H-values. A displacement of the particle from its 
initial position in the narrow wave packet v(q) centred about q = 0 by an 
amount gjt as the particle leaves the field can be understood as a measurement 
of H with the outcome H = j. 

Now, the same analysis for H’ instead of H will yield an equation of motion 
for the particle trajectories in terms of a position coordinate q’: 

dg’= Jd 
dt P 

where the initial state of the particle is 

w(q’,O) = &0Ejr W = 3, 

and q’ is the position coordinate of the particle that becomes correlated with the 
value of H’ during the interaction (in which the particle is passed through an 
electromagnetic field oriented in a direction suitable for a measurement of 
H’ = S2,, - S2YI rather than H = S*, - S’J. We assume that the form of the 
initial position wave function is the same for q’ as for q, and that the strength, 
g, and duration, T, of the interaction is the same for H’ as for H. 
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Distinct possible particle trajectories cannot cross along the q-axis in an 
H-measurement, or the q’-axis in an H-measurement, because the equation of 
motion is deterministic and gives velocity only as a function of position. This 
means that in an H-measurement, trajectories that end up, after time t 2 T, at 
one of the three possible final q-positions, -gt, 0 or gt, in that order, begin in 
one of three possible q-regions in the initial wave packet p(q), ordered from 
negative to positive values of q. The relative sizes of the q-regions in an 
H-measurement will differ from the relative sizes of the q’-regions in an 
H-measurement, because fractions Ic_, /2,~co/2,/c+, 1’ of the initial q-positions (in 
an ensemble distributed according to @(q)12 end up at the positions q = -gt, 

q = 0, q = gt, respectively (corresponding to the results H = - 1, 0, +l in an 
H-measurement), while d@zrent fractions /c_ 1’ 12,jc,,’ /2,~c+1’ 1’ of the initial 
positions (in an ensemble distributed according to the same distribution 
function p(q’)12) end up at the positions q’ = -gt, q’ = 0, q’ = gt, respectively 
(corresponding to the results H’ = - 1, 0, + 1 in an X-measurement). Note that 
lci12 # IG;‘/‘, unless H = H’. It follows that a given initial position of the particle 
will be affected differently by different interaction Hamiltonians, and so a 

measurement of S’ via an H-measurement need not yield the same result as ; 
a measurement of s’ via an H-measurement, for the same initial position Z 
and quantum state of the particle. 

In this sense, Bohm’s theory violates the functional relationship constraint. If 
values are assigned to all observables of a spin-l particle as the values that 
would he obtained on measurement (where a measurement of an observable is 
understood as an evolution of the quantum state of the particle to a form that 
correlates position values with values of the observable in the above sense) then, 

for some initial positions of the particle, the value assigned to s’ will nut be 
equal to the square of the value assigned to H2, and also equal to the square of 
the value assigned to Hf2. For example, suppose the initial position of the 
particle is such that a measurement of H would yield the value +l, while a 
measurement of H’ would yield the value 0. If these values are assigned to H 

and H’, then the functional relationship constraint requires that S! = 1 and also 

that S! = 0, since e = Hz = H”. Of course, this contradiction does not show any 
inconsistency in Bohm’s interpretation of quantum mechanics. Rather, it shows 
that observables like H, H’ and S,-observables associated with dispositions of 
the system-are ‘contextual’, in the sense that no determinate values can be 
attributed to them, except in the context of a specific measurement process, 
understood as the dynamical evolution of the quantum state to a certain form. 

In a similar sense, Bohm’s theory is non-local. Consider two spin-l/2 
particles, S, and S,, in the singlet spin state at time t = 0: 
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as in Bohm’s version of the Einstein-Podolsky-Rosen experiment.52 A 
measurement of spin in the z-direction on S, (via a Stern-Gerlach interaction 
at S, that correlates the position of S, to the z-spin of S,) induces an evolution 
of the quantum state of the 2-particle system to a form: 

WGwI!290 = v&2) 
[ 

1 

7 
2 G441+gt)I+h -)2- i;;; d4, -go -M+j2 1 

where the wave packets q(ql -gt) and v(q,+gt) for the relevant position 
coordinates of S, are separated with negligible overlap. The q, position 
coordinate of the particle S, is effectively associated with just one of these wave 
packets. This means that the position of the 2-particle system S,+S2 in 
configuration space, i.e. the q,,q2 position (ignoring other position coordinates 
not affected by the Stern-Gerlach interaction at S,), can be associated with just 
one of the wave packets p(q2)cp(q1+gt) or q(q2)p(ql -gt). So in a subsequent 
measurement of the spin of S, via a Stern-Gerlach interaction at S,, the 
evolution of q2 will depend on the configuration space position of S, +S2, which 
is effectively correlated either with the spin state I+), j - )2 or with the spin 
state I- ), 1+)2. It follows that S,+S, will behave in the &-interaction as if 
its quantum state has effectively collapsed to p(q2)&ql+gt)l+), 1 -)2 or 

v)(qzhGh -go ->,+I)23 and so q2 will evolve to a position corresponding to a 
z-spin value for S, opposite to the z-spin value correlated with the final position 
of ql. Evidently, then, the outcome of a spin measurement at S, will depend on 
the type of spin measurement at S,, i.e. on the orientation of the Stern-Gerlach 
magnet at Sr. The quantum state of S,+S, will evolve differently for a 
measurement of x-spin at S, rather than z-spin, say, and so will affect the 
evolution of q2 differently in a subsequent spin measurement at S,, as in the 
measurement of H and H’ on the spin-l system. 

There is another sense, though, in which both the functional relationship 
constraint and the locality condition are satisfied by Bohm’s causal interpret- 
ation. Consider the spin-l system again, and the quantum state: 

W(4J) = CqP(crtiW=j) 

at times t 2 T after the interaction. If q is a preferred determinate observable 
then, in this state, we can take Has determinate and also $ as determinate for 

the system, i.e. H and $ inherit determinate status from q and the quantum 
state, to the extent that the measurement can be regarded as ideal, and the wave 
functions q(q - gjt) approximate orthogonal eigenfunctions. Of course, the 
wave function tails will always overlap to some small extent, so even if we 

‘*D. Bohm, Quantum Theory (Englewood Cliffs, NJ: Prentice-Hall, 1951). 
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discretize q to three relevant values (representing three non-overlapping ranges 
of q-values associated with the three peaks of the wave functions), the 

projections of the state e(y/(q,t)) onto the three corresponding eigenspaces will 
not yield the rays e4, spanned by the vectors &q -gjt)lH =j), forj = - l,O,+l, 
but only rays ei, that are arbitrarily close to the rays e,, (for sufficiently large t). 

Here we simply treat the wave functions &q--gjr) as non-overlapping and 
effectively eigenfunctions of q, as Bohm does in his analysis of measurement in 

quantum mechanics.53 Then H-propositions and cf-propositions (more pre- 

cisely, propositions arbitrarily ‘close to’ H-propositions and $-propositions) 
belong to the lattice L_ ,=~ ,. By the theorem of Section 2, LeqP,~ e,., contains the 
maximal set of proposi&ons that we can take as determinately true or false for 
the state &q,t), given that q has a determinate value-the maximal set of 
propositions associated with observables that are measured via the pointer q in 

the Bohmian sense. For the state v(q,t), observables like H and s’ associated 

with Le,,e, ,Pu / satisfy the functional relationship constraint. The value assigned 

to $ is the square of the value assigned to H, for any position of the pointer q, 

and similarly for other observables associated with Lev,~ e, . (H’-propositions 

do not, of course, belong to L_leY_,eYt,.) S o i we consider the’set of observables , f 
that are measured in the Bohmian sense, by the evolution of the quantum state 
to a specific form that correlates the preferred determinate observable to values 
of these other observables, then for these observables the functional relation- 
ship constraint is satisfied. It follows that the locality condition is satisfied in 
this sense, for composite systems associated with tensor product Hilbert spaces, 

because locality is a special case of the functional relationship constraint. 
Bohm’s interpretation is a ‘beable’ interpretation of quantum mechanics in 

the spirit of Bell’s notion. As Bell put it:s4 

It would be foolish to expect that the next basic development in theoretical physics 
will yield an accurate and final theory. But it is interesting to speculate on the 
possibility that a future theory will not be intrinsically ambiguous and approximate. 
Such a theory could not be fundamentally about ‘measurements,’ for that would 

again imply incompleteness of the system and unanalyzed interventions from outside. 
Rather it should again become possible to say of a system not that such and such may 
be observed to be so but that such and such be so. The theory would not be about 
‘observables’ but about ‘beables’.[...] 

Many people must have thought along the following lines. Could one not just 
promote some of the ‘observables’ of the present quantum theory to the status of 
beables? The beables would then be represented by linear operators in the state space. 
The values which they are allowed to be would be the eigenvalues of those operators. 
For the general state the probability of a beable being a particular value would be 
calculated just as was formerly calculated the probability of observing that value. 

“See Chap. 6 ‘Measurement as a Special Case of Quantum Process’, in D. Bohm and B. J. Hiley, 
The Undivided t!Jniverse: An Ontological Interpretation of Quantum Theory, op. cit., pp. 97-133. 

54J S Bell, Speakable and Unspeakable in Quantum Mechanics, op. cit., p. 41. 
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Bell’s notion of a ‘beable,’ referring to an objective property of a physical 

system, is equivalent to Einstein’s ‘element of reality’, the terminology em- 

ployed in the Einstein-Podolsky-Rosen argument.55 Bell writes:56 

In particular we will exclude the notion of ‘observable’ in favour of that of ‘beable.’ 
The beables of the theory are those elements which might correspond to elements of 
reality, to things which exist. Their existence does not depend on ‘observation’. Indeed 
observation and observers must be made out of beables. 

The ‘causal’ interpretation, as Bohm and Hiley characterize it,57 is a 

reformulation of quantum mechanics in terms of beables: 

This theory is formulated basically in terms of what Bell has called ‘beables’ rather 
than of ‘observables.’ These beables are assumed to have a reality that is independent 
of being observed or known in any other way. The observables therefore do not have 
a fundamental significance in our theory but rather are treated as statistical functions 
of the beables that are involved in what is currently called a measurement. 

The interpretation of quantum mechanics in terms of beables is motivated by 

certain realist principles formulated by Einstein, a separability principle and a 

locality principle. These principles are implicit in the Einstein-Podolsky-Rosen 

argument (which appears to have been largely written by Podolsky) and explicit 

in various reformulations of the argument by Einstein. For example, referring 

to the Einstein-Podolsky-Rosen argument, Einstein writes as follows:58 

Of the ‘orthodox’ quantum theoreticians whose position I know, Niels Bohr’s seems 
to me to come nearest to doing justice to the problem. Translated into my own way 
of putting it, he argues as follows: 

If the partial systems A and B form a total system which is described by its y-function 

vI(AB), there is no reason why any mutually independent existence (state of reality) 
should be ascribed to the partial systems A and B viewed separately, not even if the 

partial systems are spatially separated from each other at the particular time under 

consideration. The assertion that, in this latter case, the real situation of B could not 
be (directly) influenced by any measurement taken on A is therefore, within the 
framework of quantum theory, unfounded and (as the paradox shows) unacceptable. 

By this way of looking at the matter it becomes evident that the paradox forces us to 
relinquish one of the following two assertions: 

(1) the description by means of the t++function is complete 
(2) the real states of spatially separated objects are independent of each other. 

55A Einstein, B. Podolsky and N. Rosen, ‘Can Quantum-Mechanical Description of Physical 
Realit; be Considered Complete?‘, Physical Review 47 (1935), 777-780. 

56J S Bell Speakable und Unspeakable in Quantum Mechanics (Cambridge: Cambridge 
Univkrsiry Preis, 1987), p. 174. 

57D. Bohm and B. J. Hiley, The Undivided Universe.. An Ontological Interpretation of Quantum 
Theory op. cit., p. 41. 

‘*A. Einstein, in Albert Einslein: Philosopher-Scientist, P.A. Schilpp (ed.) (Illinois: Open Court, 
1991), 3rd edn, pp. 681-682. 
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On the other hand, it is possible to adhere to (2) if one regards the y+function as the 
description of a (statistical) ensemble of systems (and therefore relinquishes (1)). 
However, this view blasts the framework of the ‘orthodox quantum theory.’ 

Einstein’s ‘real state’ or ‘real situation’ of a physical system (elsewheres9 he 

speaks of the ‘being-thus’ of a system) corresponds in our formulation to a 

2-valued homomorphism on the determinate sublattice defined by the quantum 

state of the system and the preferred determinate observable. Each 2-valued 

homomorphism selects a particular determinate value for the preferred observ- 

able, and also particular determinate values for other observables associated 

with the determinate sublattice, i.e. each 2-valued homomorphism selects a set 

of preferred and derived determinate properties for the system. Since a 

determinate sublattice is uniquely defined by the quantum state and a preferred 

determinate observable, and the 2-valued homomorphisms on a determinate 

sublattice are in 1-l correspondence with the values of the preferred observable, 

Einstein’s ‘real state’ can be characterized equivalently as the specification of 

the quantum state of the system and the value of the preferred observable, 

which constitute the only genuine beables of the system (other observables 

associated with a determinate sublattice represent dispositions in the sense 

discussed above). 

The separability and locality principles can therefore be formulated as 

follows: 

Separability: The determinate properties (‘real states’) of spatially 

separated systems are independent of each other. 

Locality: If two systems are spatially separated, then the determinate 

properties (‘real state’) of one system cannot be directly influenced by any 

measurement on the other system. 

As Einstein presents it, the issue of the completeness of quantum 

mechanics-the heart of the dispute between Einstein and Bohr--concerns the 

separability principle. What our determinate sublattices preserve is only a weak 

separability principle: the determinate properties (‘real states’) of spatially 

separated systems are independent of each other, i.e. each system is indepen- 

dently characterized by its own determinate sublattice, if and only if the 

quantum state of the composite system is not an ‘entangled’ state (linear 

superposition of product states) arising from past interaction between the 

systems. 

Several authors, notably Fine60 and Jammer,bl have suggested that Einstein 

had something other than hidden variables in mind when he argued that 

59A Einstein Dialecfica 2 (1948), 320-324. Translated as ‘Quantum Mechanics and Reality’, in 
M. Bdrn (ed.), ‘The Born-Einstein Letters (London: Walker & Co., 1971), p. 192. 

60A Fine The Shaky Game: Einstein, Realism, and the Quantum Theory (Chicago: University of 
Chicago P&s, 1986). 

“M. Jammer. The Philosophy of Quantum Mechanics (New York: Wiley, 1974). 
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quantum mechanics is incomplete. Einstein’s negative reaction to Bohm’s 
hidden variables theory in correspondence with Renninger, Born and others is 
often cited in support of this view. (In a letter to Born dated 12 May 1952, 
Einstein dismissed the theory as ‘too cheap for me.‘62) However, we agree with 
Bell’s endorsemenP3 of Shimony’s characterization of Einstein as ‘the most 
profound advocate of hidden variables’, in the sense of a ‘beable’ interpretation 
of quantum mechanics. Einstein’s lack of enthusiasm for Bohm’s theory should 
not be construed as a rejection of the hidden variables program per se, but only 
a particular way of developing this program. What our theorem shows is that 
the possible ‘completions’ of quantum mechanics in Einstein’s sense can be 
uniquely characterized and reduced to the choice of a fixed preferred deter- 
minate observable, i.e. a fixed beable. So, in fact, the option of preserving 
separability in the strong sense is excluded in a beable interpretation. 

We have noted that the determinate sublattices satisfy the Kochen and 
Specker functional relationship constraint in what might be termed an 
‘ontological’ sense, i.e. the values of the determinate observables associated 
with a determinate sublattice, as assigned by all 2-valued homomorphisms on 
the lattice, preserve the functional relationships satisfied by these observables, 
and hence preserve locality as a special case of the functional relationship 
constraint. But in what might be termed a ‘dynamical’ sense, the interpretations 
associated with determinate sublattices are non-local. If we understand a 
measurement as an interaction that induces an evolution of the quantum state 
to a form that correlates values of a preferred determinate observable with 
values of other observables, in virtue of which these other observables achieve 
derived determinate status in the time-evolved state, then a measurement on a 
system S, can make determinate a dispositional property of a system S,, 
spatially separated from S,, that was not determinate before the measurement. 
And that will translate into a different value for the preferred observable when 
the disposition is actualized in a measurement. In this sense, Einstein’s locality 
principle is violated. The ‘real states’ of one system can be directly influenced by 
a measurement on another spatially separated system. 

3.5. Bohr’s Complementarity interpretation 

While beable interpretations of quantum mechanics like Bohm’s interpret- 
ation take a fixed preferred observable as determinate once and for all, on 
Bohr’s complementarity interpretation an observable can be said to have a 
determinate value only in the context of a specific, classically describable 
experimental arrangement suitable for measuring the observable. For Bohr, a 
quantum ‘phenomenon’ is an individual process that occurs under conditions 
defined by a specific experimental arrangement. The experimental arrangements 

“A Einstein, in M. Born (ed.), The Born-Einstein Lefters (London: Walker&Co., 1971), p. 192. 
63J. ‘S. Bell, Speakable and Unspeakable in Quantum Mechanics, op. cit., p. 89. 
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suitable for locating an atomic object in space and time, and for a determi- 

nation of momentumxnergy values, are mutually exclusive. We can choose to 

investigate either of these ‘complementary’ phenomena at the expense of the 

other, so there is no unique description of the object in terms of determinate 

properties. 

Summing up a discussion on causality and complementarity, Bohr writes? 

Recapitulating, the impossibility of subdividing the individual quantum effects and of 
separating a behaviour of the objects from their interaction with the measuring 
instruments serving to define the conditions under which the phenomena appear 
implies an ambiguity in assigning conventional attributes to atomic objects which 
calls for a reconsideration of our attitude towards the problem of physical explana- 
tion. In this novel situation, even the old question of an ultimate determinacy of 
natural phenomena has lost its conceptual basis, and it is against this background that 
the viewpoint of complementarity presents itself as a rational generalization of the 
very ideal of causality. 

Pauli characterizes Bohr’s position this way55 

While the means of observation (experimental arrangements and apparatus, records 
such as spots on photographic plates) have still to be described in the usual ‘common 
language supplemented with the terminology of classical physics’, the atomic ‘objects’ 
used in the theoretical interpretation of the ‘phenomena’ cannot any longer be 
described ‘in a unique way by conventional physical attributes’. Those ‘ambiguous’ 
objects used in the description of nature have an obviously symbolic character. 

We can understand the complementarity interpretation as the proposal to 

take the classically describable experimental arrangement (suitable for either a 

space-time or a momentum+nergy determination) as defining the preferred 

determinate observable in what Bohr calls a quantum ‘phenomenon’. So the 

preferred determinate observable is not fixed for a quantum system, but is 

defined by the classically described ‘means of observation’. On this view, the 

determinate sublattice of a quantum system depends partly on what and how 

we choose to measure, not on objective features of the system itself. To echo 

Pauli, the properties we attribute to a quantum object in a measurement are 

‘ambiguous,’ or merely ‘symbolic.’ The complementarity interpretation, unlike 

a beable interpretation, which selects a fixed preferred determinate observable, 

is not a realist interpretation.66 

It is instructive to consider the application of the complementarity inter- 

pretation to the Einstein-Podolsky-Rosen experiment. Referring to this 

mN. Bohr, Dialectica 2 (1948), 312-319. 
65W. Pauli, Dialectica 2 (1948), 307-3 Il. 
“61t could also be argued that the complementarity interpretation does not really solve the 

measurement problem, unlike the other ‘no collapse’ interpretations we have been discussing 
(excluding the orthodox Dirac-von Neumann interpretation), since Bohr gives no measurement- 
independent prescription for what R should be taken to be. We concentrate on recovering other 
aspects of this interpretation, once Bohr’s choice of R is granted. 
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experiment, Bohr remark@’ that the difference between the position coordi- 
nates of two particles, Q, - Q2, and the sum of their corresponding momentum 
components, P,+P,, are compatible observables, i.e. they are represented by 
commuting operators. (This follows immediately from the commutation rela- 
tion for position and momentum, QP- PQ = ihl.) So we can prepare a 
quantum state in which both these observables have determinate values. It 
follows that a measurement of either Q, or P, on the first particle will allow the 
prediction of the outcome of a subsequent measurement of either Q2 or P,, 
respectively, on the second particle. Or putting it another way, the assignment 
of a determinate value to Q, or P, will fix a determinate value for Q2 or P,, 
respectively. But now it would appear, if the two particles are separated and no 
longer interacting, that the second particle must have both a determinate 
Q,-value and a determinate P,-value prior to the Q, or P, measurements, which 
contradicts the assumption that the quantum state is a complete description 
of the system (since no quantum state assigns determinate values to two 
incompatible observables). What this argument fails to note, says Bohr, is that 
the experimental arrangements that allow accurate measurements of Q, and P, 
are mutually exclusive, so the predictions concerning Q2 and P, refer to 
complementary phenomena. 

It is unclear from Bohr’s discussion how the attribution of a determinate 
value to an observable Q, (or PI) of a system via a measurement on that system 
can make determinate an observable Q2 (or PJ of a second system spatially 
separated from and not interacting with the first system-how, that is, Q2 (or 
PJ can inherit determinate status from the selection of Q, (or P,) as a preferred 
determinate observable. This puzzle is resolved if we take Bohr as proposing 
that the determinate sublattice for the 2-particle system is the determinate 
sublattice defined by a simultaneous eigenstate of the observables Q, - Q, and 
P,+P,, and the observable Q, (or PI) as the preferred determinate observable 
(on the basis of the particular experimental arrangement introduced for the 
measurement on the first particle). For then the determinate sublattice will 
contain propositions associated with the observable Q2 (or P2) of the second 
particle, in virtue of the form of the quantum state of the composite system as 
a strictly correlated linear superposition of product states. The non-locality here 
is analogous to the non-locality of dispositions discussed above for Bohm’s 
causal interpretation. 

Thus, the framework for interpretations of quantum mechanics presented 
here accommodates Bohr’s complementarity interpretation as well as Einstein’s 
realism, in the beable sense (stripped of separability/locality requirements, as in 
Bohm’s interpretation). The opposing positions appear as two quite different 
proposals for selecting the preferred determinate observable--either fixed, once 

6’See Bohr, op. cit., p. 316. 
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and for all, as the realist would require, or settled pragmatically by what we 

choose to observe. 
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