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What Do We Learn about Quantum Mechanics from 
the Theory of Measurement? 
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It is argued that a quantum mechanical analysis of the measurement process 
permits one to adjudicate between an individual system interpretation of the 
state vector and an ensemble interpretation, in favor of the latter. Possible changes 
to quantum mechanics that would be necessary to enable it to describe individual 
systems are discussed. 

1. I N T R O D U C T I O N  

The q u a n t u m  theory  o f  measu remen t  (QTM)  has now d e v e l o p e d  to 
the po in t  where  it m a y  be  a p p l i e d  to the des ign  o f  sensit ive measurement s .  
However ,  the subject  o f  this p a p e r  is a much  o lde r  use o f  it, in which  an 
empi r i ca l  and  intui t ive u n d e r s t a n d i n g  o f  m e a s u r e m e n t  is used  to test,  or  

o therwise  i l luminate ,  the  in te rp re ta t ion  o f  q u a n t u m  mechanics  (QM).  The 
ind iv idua l  c o m p o n e n t s  o f  this p a p e r  are not  new, bu t  it seems to me that  
the conc lus ions  which  necessar i ly  fo l low f rom them are not  as well  k n o w n  
as are the  separa te  componen t s .  These  conc lus ions  s ignif icant ly affect the 
way  in which  Q M  can and  shou ld  develop .  

2. T W O  I N T E R P R E T A T I O N S  O F  T H E  Q M  " S T A T E "  

A centra l  and  essent ia l  issue in the in te rp re ta t ion  o f  Q M  is the na ture  
o f  the  " s t a t e "  concept .  The  m a j o r  pos i t ions  on this issue were def ined long 
ago,  and  they  d iv ide  na tu ra l ly  into two classes:  

(A) A pure  state ]~} p rov ides  a comple te  and exhaust ive  desc r ip t ion  
o f  an individual  system. A dynamica l  var iab le  r ep resen ted  by the 
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operator Q has a value (q, say) /f and only if QI~)= ql'I0; otherwise the 
variable is undefined (not merely unknown, but nonexistent). 

One may distinguish variants of this view: an objective version in which 
[~} is taken to be a kind of physical property of the system, and a subjective 
version in which Ixt r) represents some observer's knowledge of the system. 

(B) A pure (or mixed) state describes the statistical properties of an 
ensemble of similarly prepared systems. 

In this view I ~ )  is not itself an element of reality, and the significance of 
the "state" concept is only as a collection of probabilities. A well-defined 
state preparation procedure yields a well-defined probability distribution 
for each observable of the system. Two variants may be identified, each 
having to do with the interpretation of probability. If  one adopts a frequency 
interpretation of probability, then one will associate the "state" concept 
with the potential ensemble of systems that may  result from repetitions of 
the state preparation procedure. If one adopts a propensity interpretation 
of probability (Popper, 1957), then one will associate the probabilities (and 
hence the "state") with the physical conditions and repeatable procedures 
that generate the ensemble, rather than with the ensemble itself. This 
difference will not be important in this paper. 

Interpretation (A) was dominant throughout the early history of QM, 
and is taken for granted in many textbooks. However, I shall argue that 
the conclusion to be drawn from the QTM is that interpretation (A) is 
untenable. A systematic exposition of interpretation (B) was given by 
Ballentine (1970). For purposes of this paper it should not be regarded as 
a unique interpretation, but rather as a class of interpretations consistent 
with the statement (B) above. 

3. ANALYSIS OF MEASUREMENT 

The process of measurement involves an object (I) and an apparatus 
(II). We wish to measure some dynamical variable R belonging to the 
object. The operator corresponding to R has a complete set of eigenvectors, 

Rlr),=r]r}, (1) 

The measurement apparatus (II) has an indicator variable A and a corre- 
sponding complete set of eigenvectors, 

AI~, m)ll : o/]oL, m),, (2) 

Here ce is the "indicator position" eigenvalue, and m labels all the many 
other quantum numbers that are needed to specify a unique eigenvector. 
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Let the apparatus be prepared in an initial premeasurement state 
[0, m)~, with a = 0. An interaction between the object and the apparatus is 
then introduced, which must be designed to produce a unique correlation 
r ~  ar between the initial value of r and the final value of a = at. The 
necessary properties of the interaction are specified implicitly by placing 
appropriate constraints on the evolution operator U. For so-called "ideal" 
measurements, which do not change the state of the object, the appropriate 
condition is 

UI r)~@10, m)u = [ r)~@lar, m')n (3a) 

This "ideal" case is unrealistic for most measurements, and is unnecessarily 
restrictive for theoretical purposes. The most general necessary condition 
on U is 

U{F)IQI0, m)t~[ = E l~rr),mm'lrt)l~lar, mt)II 
r',rn' 

=]ar ; ( r ,  m)), say (3b) 

The final-state vector of  (3b) is labeled by the "indicator position" eigen- 
value ar. The other labels (r, m) are not eigenvalues, but merely labels 
indicating where this vector came from via the unitary transformation U. 
(Unitarity will also impose some restrictions on the matrix u, but these need 
not be spelled out.) The general case (3b) imposes on the measurement 
interaction only one essential requirement: that it estzblish the correspon- 
dence r ~ a~. The values of ar corresponding to different values of r should 
be clearly distinguishable by eye, and so I shall refer to them as macroscopi- 
catly distinct values. 

If the initial state of the object is not an eigenstate of the variable R 
being measured, but rather is of the form 

]~)1 : ~  erlr)l (4) 
r 

then from (3b) and the linearity of the evolution operator U we obtain 

UI~>,| m)lt =• cr]a~; (r, m)) 
r 

= i ~ ) ,  say (5) 

This result is important enough to be stated as a theorem, even though we 
later need to extend its proof  to more general situations. 

Measurement Theorem. The final state of the entire system (object+ 
apparatus) is, in general, a coherent superposition of macroseopically distinct 
"indicator position" eigenvectors. 

The final state (5) does not satisfy the eigenvatue equation (2), so 
according to interpretation (A), the indicator position of the apparatus 
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should be undef ined  after the measurement .  But this is contrary to observa- 

tion, and  therefore in order to save in terpre ta t ion (A) one must  in t roduce 

the following: 

Projection Postulate. The final-state vector is somehow " reduced"  from 

the coherent  superpos i t ion  state ],ts~) ob ta ined  in (5) to either (i) an 

incoherent  mixture of " ind ica tor  pos i t ion"  eigenvectors or (ii) a single 

eigenvector taro ;(r0, m)), where aro is the observed value of the " ind ica tor  

posi t ion."  

Both versions of the Project ion Postulate are apparent ly  incompat ib le  
with the Schr6dinger  equa t ion  of mot ion  for the entire system; however,  

there have been  a n u m b e r  of attempts to reconcile the two. Some of those 

attempts,  and  their refutat ions,  are listed below. 

(a) The " reduc t ion"  is caused by an unpredic tab le  and uncont ro l lab le  

d is turbance  of the object by the measur ing  apparatus.  2 

If the interact ion be tween the object and the appara tus  satisfies the 

min imal  necessary condi t ion  (3b), then that in teract ion will cause, rather 

than destroy, the coherent  superposi t ion.  

(b) The observer causes the " reduc t ion"  u p o n  reading the result of 

the measurement  from the a p p a r a t u s ]  

The strangely psychic character of this proposal  can be e l iminated 
simply by inc luding  both  the observer and  the apparatus  in the defini t ion 
of II,  whereupon  the Measurement  Theorem applies as in (a). 

(c) The act ion of the env i ronment  u p o n  the system causes the "reduc-  

t ion"  of the state. 4 

Any por t ion of the env i ronmen t  whose effect is expected to be significant 

should be inc luded with the apparatus  in the defini t ion of part  II of the 

2The "disturbance" theory is the oldest attempt to explain the "state reduction" process, its 
probable origin being in Heisenberg's "x-ray microscope" argument. It was abandoned by 
Bohr in 1935 following the Einstein-Podolsky-Rosen paper, and is no longer widely advo- 
cated. Yet a book as recent as Messiah (1964, p. 140) still used it. 

3This view appears to be advocated, by Wigner (1961). He has indicated that he does not 
regard it as true, but rather as an apparent consequence of the theory, showing (in the manner 
of a reductio ad absurdum argument) that something must be wrong with the orthodox theory. 

4This idea is expressed more positively by Zurek (1986). In fairness, it should be pointed out 
that he does not claim that the state of the total system (object+ aparatus + environment) will 
achieve the desired form of equation (7), but only that the partial state obtained by tracing 
over certain environmental variables will do so. However, 1 claim that even if his result were 
conclusively proven, which is not yet the case, it would not be relevant to the question of 
interpretation of QM that is the subject of this paper. The partial state operator for one part 
of a two-component system, obtained by tracing over the variables of the other part, will 
omit all correlations between the two parts. It is therefore not an appropriate tool for studying 
fundamental questions of interpretation, particularly in view of the fact that the division of 
the system into two parts is arbitrary and conventional. Such questions can only be answered 
by considering the total state of the system, including any relevant portions of the environment. 
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system. The coordinates of the environment then become part of the set 
labeled " m "  in (2). The Measurement Theorem then applies without 
modification. 

(d) The initial state of the apparatus II cannot, in practice, be specified 
as a unique pure state, as the notation ]0, m)u would imply, since 
the state preparation procedure will not reproduce the same " m "  
upon each repetition. (This is especially the case if large parts of 
the environment are included in the definition of II.) If the initial 
state is a mixed state, then the final state will also be a mixed state, 
apparently opening the possibility of saving version (i) of the 
Projection Postulate [though not version (i i)]]  

This is the only proposal that requires a nontrivial response, although the 
conclusion is unaltered. 

Instead of the initial pure state vector assumed in (5), 

l* />  = [*>i@l 0, m),, 

we now assume an initial mixed state for the system, 

i m)(~ ,~l (6) p = Z wm]'I" 
m 

Here wm can be regarded as the probability associated with each of the 
microscopic states labeled by m. The hope of an advocate of interpretation 
(A) would now be that the final state would be a mixture of "indicator 
position" eigenstates, perhaps of the form 

pa =~ ]Crl2 ~ Vmla,; (r, rn))(a, ; (r, m)[ (7) 
r m 

but certainly diagonal with respect to at, since any nondiagonal terms would 
correspond to coherent superpositions of ~ position" eigenvectors. 

That hope is unfounded. The actual final state is 

pf = Up,U + =2 wml'I*Sm)('I'~[ (8) 
m 

where I * ~ ) =  U[*~). From (5) we obtain 

p / = Z %  * CrlCr2 2 WmlOlri ; ( F 1 ,  m))(OLr2 ; ( r 2 ,  rn)l ( 9 )  
r l  r2 m 

The terms with c~rl # ~r2 indicate coherent superposition of macroscopically 
distinct "indicator position" eigenvectors, just as was the case in (5), and 
it is clear that these terms do not cancel out. Thus, the Measurement Theorem 
holds for a mixed initial state as well as for a pure initial state. 

5This seems to have been the view of Heisenberg (1958, pp. 53-55). 
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The proof  can also be extended to approximate measurements 
(Shimony, 1974). The suggestion that the problems of measurement and 
irreversibility might be closely connected has been discussed elsewhere 
(Ballentine, 1986). Strictly speaking, any irreversible processes that may 
occur are already included in (c) and (d), so the matter will not be considered 
further in this paper. 

4. WHAT HAVE WE LEARNED? 

The conclusion of this analysis, expressed in the Measurement 
Theorem, is that a kind of interaction that is not at all exotic will lead 
inevitably to a coherent superposition of terms that together describe macro- 
scopically distinct values of a certain quantity (the "indicator position" of 
the apparatus). No amount of mathematical sophistication or detailed 
calculation on more realistic models can alter this fact, anymore than they 
could alter the theorem of energy conservation. If this sort of coherent 
superposition is unacceptable within any interpretation, as is apparently 
the case with interpretation (A), then that interpretation is untenable and 
must be abandoned. 

The "measurement problem," viewed as the problem of explaining 
how the "reduction of the state vector" comes about, is insoluble. There is 
no such physical process as "state reduction," at least not as long as the 
accepted mathematical formalism of QM is correct. On the other hand, the 
"measurement problem" viewed as seeking an interpretation of the formal- 
ism that is compatible with the Measurement Theorem is solved by adopting 
an ensemble interpretation of the state vector, since interpretation (B) does 
not require the nonexistent "state reduction" process. 

5. WHERE DOES IT LEAD US? 

Since, as has been argued, the QM state vector describes only an 
ensemble of similarly prepared systems, then there is a need for a theory 
that does describe individual systems. This need is especially felt in cos- 
mology, where there is no room for any observer or environment outside 
of the system, and where probabilistic predictions of the kind that serve so 
well in atomic physics are untestable because it is not possible to perform 
measurements on an ensemble of similarly prepared universes. 

It must be emphasized that a description of individual phenomena 
cannot be obtained within QM merely by a change of interpretation. Any 
interpretation, old or new, that incorporates the tenets of (A) will encounter 
the insoluble "measurement problem." There are two possible routes to a 
description of individual systems: one may add additional structure to QM 
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compatible with the existing formalism; or one may modify the formalism 
in some way. 

A good example of a structure added within the existing framework 
of the statistical quantum theory is the quantum potential of Bohm (1952), 
which generates individua! particle trajectories that automatically reproduce 
the usual position probability density !xl2'(r)] 2. These trajectories have now 
been computed in detail for several situations involving interference 
(Philippidis et al., 1979; Dewdney et al., 1987). The quantum potential is 
determined from the wavefunction, VQ(r) = ( - h2/2m) V2R/R,  where R = 
Iq~l. At first sight this approach seems to go against the spirit of  the statistical 
interpretation (B), since q~ is no longer merely a generator of probabilities 
for the ensemble. Now �9 becomes an element of physical reality in the 
individual case through its connection with VQ. But the fatal flaw of 
interpretation (A) is avoided by denying its second tenet: according to 
Bohm's theory, the position of a particle always has a definite value, even 
though q~ need not resemble a position eigenfunction. Bohm's theory is of 
value because it provides a model of the individual phenomena that are 
described only statistically by QM. The model is not likely to be unique, 
and generalizations should be sought. 

The other possible route to the description of individual systems 
necessarily requires some modification of the mathematical formalism, and 
the number of  possibilities seems almost limitless. One of them is to modify 
the Schr/Sdinger equation so that coherent superpositions of macroscopically 
distinct states will quickly and spontaneously disappear, making it plausible 
to reinterpret the state vector qr as the description of an individual system. 
The rationale for this approach is described by Pearle (1986). It should be 
emphasized that such modifications of QM are not needed to solve any 
"problem of measurement." Rather, they are needed because without 
modification QM cannot provide a description of individual systems, the 
analysis of  the measurement process being only a convenient means of 
demonstrating this fact. Most of these theories for "spontaneous reduction" 
of coherent superpositions are rather ad hoe, and hence not very compelling. 
A notable exception is the recent theory of Diosi (1987). He postulates that 
the gravitational field is not quantized, but is subject to fluctuations of the 
form and magnitude suggested by the Bohr-Rosenfeld analysis. Since gravity 
couples universally to the mass density of all systems, the theory has no 
arbitrary parameters. Assuming a white noise spectrum for the fluctuations, 
he derives a master equation for the evolution of the noise-averaged statis- 
tical operator. This equation permits "pure"  states to evolve into "mixed" 
states as long-range coherence decays spontaneously. The maximum coher- 
ence length of a neutron is estimated to be 10 6 cm, but that of a colloidal 
grain of radius 10 -5 cm is estimated to be only of the order of the radius 
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itself. Thus,  the fami l ia r  p red ic t ions  o f  Q M  for a toms shou ld  not  be sig- 
nif icant ly a l tered,  but  coheren t  mac roscop ic  superpos i t ions  of  the type  
p red ic t ed  in the analysis  o f  measu remen t  should  be suppressed .  It will be 
in teres t ing to devise exper iments  to test this theory  in the regime in te rmedia te  
be tween  the a tomic  and  m a c r o s c o p i c  domains .  
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